
Software and Systems Modeling (2022) 21:435–436
https://doi.org/10.1007/s10270-022-00999-x

EDITORIAL

Modeling in advanced systems engineering

Jeff Gray1 · Bernhard Rumpe2

Published online: 30 March 2022
© The Author(s) 2022

Previous editorials highlighted the use of models and the
activity of modeling as an integral part of almost all devel-
opment activities for complex systems. Complexity is an
omnipresent challenge, for software, for mechanical systems
with intelligence (e.g., autonomous cars, robots, healthcare
gadgets or airplanes), for production plants, and also for
biological systems (e.g., advanced medicine, human cells,
organs, and even full organisms), that will be engineeredwith
increased frequency in the future. “Systems of systems” are
typically confederated and collaborating ensembles of sys-
tems that were originally designed individually, but through
new opportunities that were not originally envisioned, are
now required to tightly cooperate. Examples of such systems
include telecommunications services, multiple integrated
web services across the internet, energy networks and also
the city networks of collaborating smart buildings and trans-
portation infrastructure.

All of the examples listed previously needmodels. During
development of these initially independent systems, models
are often defined before the system exists, requiring explicit
modeling activities to explicate requirements on the system
to document multiple design decisions and alternatives. This
is an entirely different process from howmodels come to life
when using data science techniques to extract models (e.g.,
of behavior or typical dynamic configurations) from obser-
vations of existing systems. These other kinds of extracted
models are helpful when optimizing existing systems and
processes, but are not intended for the original design (which
may have occurred by nature). However, it is our belief that
even though the process for model creation and use is differ-
ent across various domains, the same underlying modeling
paradigms and concepts can often be incorporated. As a

B Bernhard Rumpe
bernhard.rumpe@sosym.org

Jeff Gray
jeff.gray@sosym.org

1 University of Alabama, Tuscaloosa, AL, USA

2 RWTH Aachen University, Aachen, Germany

consequence, these models could also be adopted in simi-
lar modeling languages.

This brings us to the interesting question of whether and
howfar amodeling language fromUMLorSysML(e.g., Stat-
echarts or Activity Diagrams) is already fit for this purpose?
For example, how much extension is needed to add concepts
such as modeling uncertainty and statistical distribution of
possible behaviors? Even though there is much research in
these domains that has produced compelling results, how
long will it take to see these results made available in broadly
used tools? We believe that much progress still needs to be
made in order to realize the full potential.

Currently, there is an ongoing effort to inject more explicit
modeling techniques into the Systems Engineering disci-
pline, which we define as including the intersection of the
mechanical, electrical and software subdomains. Software
Engineering already provides many modeling techniques to
address complexity and architectural structure. This is also
true for Electrical Engineering, with Mechanical Engineer-
ing supporting the use of many modeling ideas in different
contexts. The concepts of modeling across these disciplines
can expand the ability of a systems engineer to address safety,
security, robustness andoperability concerns, aswell asmany
other desirable properties of the systems to be developed and
produced in the future.

This observation brings us to the well-known challenge
that most of these modeling techniques do not integrate very
well. As a consequence, it is still frustratingly difficult to
define an appropriate tool chain that adequately addresses
a new project’s needs (e.g., systems analyses and synthesis
activities).

From a Software Engineering point of view, the existence
of components developed using Artificial Intelligence does
not really change the game. Software Engineering has estab-
lished the foundational understanding that software is never
completely correct and the unpredictable behavioral errors
must be detected and absorbed internally to prevent full
system failure. The integration of AI components becomes
just another type of unreliable component that must be con-
sidered. Specific precautions must be taken to address the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-00999-x&domain=pdf


436 J. Gray, B. Rumpe

possible failures of AI-based components. Even the idea of
self-explainability is not an entirely new concept. A common
challenge of Software Engineering is the need to explain to a
user what the software is doing or why it cannot do a specific
requested action. The existence of explicitly defined models
can be helpful in explaining behavior to users (e.g., using
state model as underlying concepts).

The idea of “Advanced Systems Engineering” is an
approach that tries to address many of the current chal-
lenges, often by adding AI-based development techniques
for the software needs of the system. However, many of the
existingmodeling techniques, methods and practices of Soft-
ware Engineering are often ignored because of an assumption
that software need not be developed in the future as in the
past. This approach places an emphasis on training software
through condensing available data to directly embeddable
models. Yet, this idea will only work in very very narrow
cases and it is not clear what to do with the majority of
the complex software that is not addressed by an “Advanced
Systems Engineering” approach. Innovative systems seem
to derive their innovations to a larger extent from the soft-
ware and software services around the mechanical part of the
system.

Computer Science (in general) and Software Engineer-
ing (in particular) have not been able to transfer all of their
knowledge, techniques andmethods to SystemsEngineering.
There is much to do and the use of an integrated set of mod-
eling techniques, defined in explicit modeling languages and
assisted by an integrated toolchain, is still far away. Software
development methods, such as Agile Methods or DevOps,
amidst the general use of models is steadily increasing in the
integrated Systems Engineering domain.

It will be interesting to see which forms of model mod-
ularity will be more successful and beneficial for Systems
Engineers in the long-term and how all of these forms and
their use of models will collaborate during design and oper-
ation of advanced, intelligent systems.

1 Content of this Issue

1. Expert Voice

• “Low-code development and model-driven engineer-
ing: Two sides of the same coin?” byDavideDiRuscio,
Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio,
Massimo Tisi, and Manuel Wimmer

2. Theme Section on Multi-Level Modeling
Guest Editors: Adrian Rutle and Manuel Wimmer

3. Regular Papers

• “Probabilistic modelling and verification using
RoboChart and PRISM” by Kangfeng Ye, Ana Cav-
alcanti, Simon Foster, Alvaro Miyazawa, and Jim
Woodcock

• “Model-based test case generation and prioritization: a
systematic literature review” by Muhammad Luqman
Mohd-Shafie,WanWanKadir, Horst Lichter,Muham-
mad Khatibsyarbini, and Mohd Adham Isa

• “A cross-technology benchmark for incremental
graph queries” by Georg Hinkel, Antonio García-
Domínguez, Rene Schöne, Artur Boronat, Massimo
Tisi, Théo Le Calvar, Frédéric Jouault, Jószef Marton,
Tamás Nyíri, János Benjamin Antal, Márton Elekes,
and Gabor Szarnyas

• “Contrasting dedicated model transformation lan-
guages versus general purpose languages: a historical
perspective on ATL versus Java based on complex-
ity and size” by Stefan Höppner, Timo Kehrer, and
Matthias Tichy

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Modeling in advanced systems engineering
	1 Content of this Issue




