
Vol.:(0123456789)1 3

Software and Systems Modeling (2021) 20:591–593
https://doi.org/10.1007/s10270-021-00887-w

EDITORIAL

Modeling in the large: model libraries

Jeff Gray1 · Bernhard Rumpe2

Published online: 14 May 2021
© The Author(s) 2021

Modeling in the Large is a key concept that is vital toward
addressing the growing complexity and organizational
requirements that are faced by developers when applying
modeling techniques to real-world problems. For the most
simple products, it is usually not necessary to define and fol-
low a complicated formal development process. Modeling
is particularly beneficial if the product is complex, comes
in many different variants, or if the product is for a highly
regulated domain (e.g., safety and security regulations). In
these cases, one model cannot describe the whole product,
but many models are needed to define multiple interact-
ing concerns, often requiring several different languages to
describe various aspects and viewpoints of the products or
parts of the system under development.

A modeling approach for software and systems engi-
neering naturally needs to cope with many models that are
related to each other. Research at the intersection of pro-
gramming languages and software engineering has articu-
lated the benefits of a clear and sound modularity concept to
contain the complexity of various decompositions that are
essential for programming of large systems. A key insight
from these findings is that programming modules (e.g., mod-
ules, classes, packages) are more reusable if they are self-
contained with clear boundaries (i.e., interfaces). This idea
was even promoted in the earliest discussions of software
reuse when Doug McIlroy introduced the concept of soft-
ware components and reuse in the late 1960s. The concept
of modular reasoning also facilitates a discussion about the
correctness of a module without having to understand every
detail specified in other parts of the system. Reusability and
effectiveness of interface design have allowed us to design
software more quickly and with higher quality. In fact, at

the past annual MODELS and AOSD conferences, several
SoSyM editors organized over 15 instances of the “Work-
shop on Aspect-Oriented Modeling” to address these core
issues, even though aspects have not proven to be as modular
for all modeling approaches.

Thus, a good modeling language should also offer tech-
niques to define models in a modular and reusable way. If
the reuse of models can be standardized in specific domains,
then model-based software and systems engineering will
progress with even more breakthroughs. The advent of
model libraries will allow us to come up with good, model-
based designs in early phases of development.

It cannot be stated more emphatically:

Modeling languages need to encourage modularity
of their artifacts. Only then can reusable models be
organized in model libraries.

However, this goal is difficult to achieve. It took a num-
ber of years to understand how to design programming lan-
guages with a good modularization concept. With the het-
erogeneity of models and modeling languages, this concept
of modularization is even more complicated.

Technically, there are advantages in connecting models
in the same way as programs: There is usually an explicit
“import” or “include” statement that references other
dependencies. When expressing such dependencies, the
symbols and resources defined in the imported models are
available in the importing model. Java has a precise under-
standing of similar concepts; namely, classes, interfaces,
methods, and attributes are exported symbols. As an exam-
ple comparison, state machines can export and reuse states
and triggers as symbols. However, many aspects in the inter-
play between state machines and other types of models are
unclear in current modeling languages, such as UML and
SysML. For example, how are the symbols in one model
represented and imported as states in a state machine? Or,
are the states defined in the state machine and exported to
other models (and programmed pieces of code)? Or a third
option, are state names defined locally and not exported at

 * Bernhard Rumpe
 bernhard.rumpe@sosym.org

 Jeff Gray
 jeff.gray@sosym.org

1 University of Alabama, Tuscaloosa, AL, USA
2 RWTH Aachen University, Aachen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00887-w&domain=pdf

592 J. Gray, B. Rumpe

1 3

all, as a form of information hiding (i.e., hidden, like private
resources in a Java class)?

The situation becomes even more problematic when
considering the fact that different modeling languages have
different kinds of symbols, and the interfaces between mod-
eling languages (and even programming languages) may not
have a precise mapping definition of each symbol between
the languages. For example, if a state machine exports its
state names, how can they be used and integrated in a Java
program that needs to access information that is within the
model? Java does not know the concept of “state”—thus,
mapping a specific state could have multiple options, such as
mapping to a Boolean variable of the same name, or an enu-
meration value, or even a class name (like the State design
pattern suggests).

These questions are not easy to resolve, and for vari-
ous different kinds of projects, the solution approach could
be different (e.g., the state machine example suggests that
various options are possible). An integration of modeling
languages under a concept like development viewpoints
may allow a viewpoint or even project-specific forms of
integration.

Future Modeling in the Large research must clarify these
issues. We hope that in the future, the modeling community
can move from a dominant focus on single models and single
language research to more improved approaches for model
and language integration.

Currently, several SysML tool vendors and their stand-
ardization efforts are considering another approach. The
UML and the SysML standards do not have many concepts
that encourage the development of independently reusable
and storable models. Instead, many of the commercial tools
offer a “one size fits all approach” that requires a modeling
artifact to consist of many connected and related models
that are stored together and usually cannot be reused inde-
pendently without some difficulty. We assert that more
organizations are defining their own domain-specific mod-
eling techniques (i.e., their own versions of how to organize
model elements) in a database-oriented way. This leads to
a “model warehouse,” where everything can be related to
everything else, and additional effort is necessary to define
appropriate modularity boundaries. Of course, another prob-
lem with this kind of model storage strategy is versioning
of the model instances, problems with building variants,
and ensuring undisturbed development in a local subspace
(which developers usually favor before they commit a con-
solidated update in a developer-friendly version control
system). In contrast, we note that the majority of attempts
to store program source code in a database has been aban-
doned, with file-based management of programs preferred
as the standard for most modern projects.

It will be interesting to see which forms of model modu-
larity will be more successful and more beneficial for devel-
opers in the long term.

 Content of this issue

1. Expert Voice
• “Specifying dynamic software system architectures”

by Bran Selic
2. Theme Section on Multi-paradigm Modeling for

Cyber-Physical Systems
 Guest Editors: Eugene Syriani and Manuel Wimmer.
3. Regular Papers

• “Implementing QVT-R via semantic interpretation in
UML-RSDS” by Kevin Lano and Shekoufeh Kolah-
douz-Rahimi

• “Wodel-Test: A model-based framework for lan-
guage-independent mutation testing” by Pablo
Gómez-Abajo, Esther Guerra, Juan de Lara, and
Mercedes Merayo

• “Live modeling in the context of state machine mod-
els and code generation” by Mojtaba Bagherzadeh,
Karim Jahed, Benoit Combemale, and Juergen Din-
gel

• “Graphical composite modeling and simulation for
multi-aircraft collision avoidance” by Feng Zhu and
Jun Tang

• “Pragmatic reuse for DSML development—Com-
posing a DSL for hybrid CPS modeling” by Stefan
Klikovits and Didier Buchs

• “CEViNEdit: improving the process of creating cog-
nitively effective graphical editors with GMF” by
David Granada, Juan Manuel Vara, Mercedes Mer-
ayo, and Esperanza Marcos

• “A systematic literature review of cross-domain
model consistency checking by model management
tools” by Weslley Torres, Mark van den Brand, and
Alexander Serebrenik.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not

593Modeling in the large: model libraries

1 3

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Modeling in the large: model libraries
	Content of this issue

