
Vol.:(0123456789)1 3

Software and Systems Modeling (2021) 20:287–289 
https://doi.org/10.1007/s10270-021-00881-2

EDITORIAL

Reflections on the standardization of SysML 2

Jeff Gray1 · Bernhard Rumpe2

Published online: 25 March 2021 
© The Author(s) 2021

In 2018, we wrote an editorial entitled “Agile Model-Based 
System Development” [GR18c], in which we made seve- 
ral observations:

1.	 “In fact, modeling is at the heart of almost any engineer-
ing discipline. Thus, it is not surprising that our engi-
neering colleagues have developed a detailed portfolio 
of modeling techniques to describe their systems in vari-
ous perspectives, viewpoints, and abstractions.”

2.	 “However, the state-of-the-art in systems modeling 
has several challenges, where each modeling aspect 
and view is often assisted by an individual modeling 
and analysis tool. Data exchange between the tools is 
complicated, even though mostly automated, but suffers 
from concerns about robustness, completeness of the 
mappings between the models, as well as regular ver-
sion upgrades of tools. A second problem is that these 
mappings between models are not easy to standardize, 
because different projects use the same modeling lan-
guages in different forms (semantics), which enforces 
configurable mappings or individually developed trans-
lations per project.”

3.	 “Traditional engineers use system models to design and 
understand the product through analysis and automation 
of engineering tasks. Therefore, models should be more 
than just documentation artifacts. Each model that cap-
tures a perspective of the project should either become 
a part of the product construction or should be used for 
automated validation and test quality management.”

We also discussed that traditional systems develop-
ment has not yet reached the maturity of agile software 

development for a number of reasons, including the far too 
long, complex, and dependent tool chain.

Currently, the development of the updated standard 
SysML 2.0 is a larger effort, where the stakeholders are try-
ing to accommodate a number of these problems:

1.	 The language itself has received a renovation in its syn-
tactical shape, with the expectation that a consolidated 
set of syntactic constructs leads to a better methodical 
use of the various modeling sub-languages.

2.	 SysML 1 was defined as a profile based on the UML, 
which on first consideration was a good idea, but in 
reality and practice led to a number of complications. 
Therefore, SysML 2 will be a standalone language inde-
pendent from UML. SysMLs relation to other modeling 
languages, like UML, CAD, PLM, etc. is therefore not 
part of the SysML standardization. (But because SysML 
and UML are at least partially overlapping there is 
potential to create inconsistencies and confusion).

3.	 SysML 2 will cover an even wider range of views that 
can be described, even embedding geometrical models, 
such as CAD and physical simulation models of various 
forms.

It will be interesting to see the results of the new SysML 
standardization effort.

On the one hand, the community seems to pretty much 
agree that a standardization that addresses many systems 
modeling needs is necessary; to quote Wittgenstein, “The 
limits of my language mean the limits of my world.” On 
the other hand, we know from UML, that trying to cover 
every aspect and viewpoint leads to a complex language, 
which in turn leads to reluctance to learn and adopt the lan-
guage. Possible solutions to this challenge will not be to 
reduce the complexity of the language, but to modularize 
the language in such ways that it can be used and learned in 
pieces, without having to deal with the rest of the language 
in total. Both natural language, as well as typical electrical 
and mechanical engineering norms, are often built that way. 
Such modularization should not only include the syntax, but 

 *	 Bernhard Rumpe 
	 bernhard.rumpe@sosym.org

	 Jeff Gray 
	 jeff.gray@sosym.org

1	 University of Alabama, Tuscaloosa, AL, USA
2	 RWTH Aachen University, Aachen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00881-2&domain=pdf


288	 J. Gray, B. Rumpe 

1 3

also the internal tool representations and semantics. There-
fore, we suggest:

Make SysML modular in all relevant dimensions.

It would be very helpful if SysML is not presented as a big 
blob, but rather as a set of “packages” or “layers” of indi-
vidually usable sub-languages. We suggest:

SysML should become a library of independent, indi-
vidually usable languages, and with a clear under-
standing of how they relate.

Standards need to be produced collaboratively by individu-
als. Frequently, these collaborators seek compromise to 
arrive at the best possible effort and results, but they are 
sometimes biased by their own personal background and 
by their own company’s interests that are supporting their 
participation in the standardization committee. In the case 
of SysML (and formerly UML), stakeholders are often tool 
vendors who have their own specific goals and objectives, 
and want to protect their own intellectual property (e.g., 
algorithms, tools, and processes) against becoming outdated 
because of different interpretations of the language in the 
standard. This may be even more prevalent for large user 
groups that have adopted specific tools and the embedded 
version of the SysML language that is manifest in such tools 
in certain forms. This is a typical phenomenon, where the 
tool developers originally create clever ideas, which might 
really be an optimal realization based on their target domain 
and their own background. But once these algorithms are 
implemented, they become a legacy asset and contribute 
toward the complexity of a standardization effort. As a result, 
compromises among the committee stakeholders often leave 
the semantics of the language open to interpretation in some 
subtle nuances, allowing several different tool-realizations to 
be valid. This has advantages (e.g., domain-specific speciali-
zations are possible), but also creates disadvantages (e.g., the 
less precise a language is defined, the more difficult for users 
to understand it). Therefore, we also suggest:

Make SysML a language with precise syntax and 
semantics.

And to overcome the tool vendor and other stakeholder bias:

Ask researchers to identify optimal language syntax 
and semantics design.

This recommendation, however, raises another important 
issue, which can be observed in typical standardization 
processes. If a goal is to make a language precise, then a 
“meta-language” is needed that supports the description of 
both syntax and semantics. For the syntax, we have mainly 
two approaches, namely grammars for the textual mod-
els and metamodels (often expressed as class diagrams) 
for visual models. The desire for a precise semantics is 

not surprising, because the majority of stakeholders for 
a standardization process must be able to understand the 
standard. The semantics of a modeling language, how-
ever, cannot be defined easily using a class diagram. Many 
research papers, including some from the authors of this 
editorial, have been investigating approaches that produce 
a precise and understandable semantics. Please note that 
we use the term semantics as “meaning of a model” as 
opposed to “behavior of a program”, because each mod-
eling language (including class diagrams) has semantics, 
but some languages are focused on structure instead of 
behavior. Because class diagrams are too restricted in their 
expressivity, we suggest:

Ask researchers to define a formally precise semantics.

We also recommend that tool developers use the results and 
findings of this formally precise semantics to verify their 
context condition checkers, tool analyses and code synthe-
ses against this semantics. This will result in a significant 
improvement on quality.

Because only certain aspects of the language semantics 
can be described using a class diagram on the “meta-level”, 
another possibility is to specify the semantics of a model 
by describing the effects during its execution in the form of 
interpretation. This is a kind of operational semantics based 
on an abstract machine. This type of semantics definition is 
suitable for generation of code for prototypes, simulation and 
also for product code. But it also reduces a modeling lan-
guage to a mere programming language, because developers 
then will no longer model properties in a compact form, but 
will “program” their models to become efficiently execut-
able. A goal of SysML 2 is to cover all aspects of develop-
ment and, therefore, requires it also to be a real modeling 
and specification language. This means that SysML 2 must 
be capable of allowing underspecification. If decisions are 
to be postponed, requirements will describe a bandwidth or 
range of possible realizations. Thus, variants of the system 
shall be possible and need to be specified, and uncertainty 
in development and during system operations must be cap-
tured. Therefore, we suggest: While it is ok to provide an 
executable semantics for a specific subset of the SysML, 
please also

Develop a true specification language that allows to 
capture underspecification in various forms.

Last year in [GR20a], we also argued that analysis is very 
important. In addition to traditional static analysis that con-
siders the known context conditions, as well as the analysis 
of a simulated execution, there are additional possibilities 
for performing advanced analysis of models. In particular, 
symbolic analysis is of deep interest for analyzing under-
specified models because such analysis allows the capture of 



289Reflections on the standardization of SysML 2﻿	

1 3

all possible behaviors, through mimicking all (or at least the 
major) execution paths in parallel. Thus, we finally suggest:

Besides a standardization of the language, it would be 
very beneficial to also standardize the kinds of analy-
ses desired for SysML.

Let us closely watch how the SysML standardization will 
proceed. For scientists, the typical way to evaluate a stand-
ardization effort is to (1) run experiments with the expected 
or then defined standard, (2) develop and argue for improved 
language variants, (3) develop smart synthesis and analy-
sis algorithms, (4) design well-calibrated “model smell” 
techniques, and (5) publish all findings in an appropriate 
conference or journal. Both the MODELS conference and 
the SoSyM journal were originally founded to accompany 
the UML 1 standardization effort. They will of course also 
serve to help the SysML standards become the best possible 
definition that will serve the needs of multiple stakeholders.

We thank Tim Weilkiens for a critical assessment of an 
earlier version of this editorial.

Cited editorials (available at https://​www.​sosym.​org/​edito​
rials):

[GR18c] J. Gray and B. Rumpe: Agile model-based sys-
tem development. In: Journal of Software and Systems Mod-
eling (SoSyM). Springer Berlin/Heidelberg. Volume 17(4), 
Pages 1053–1054, 2018.

[GR20a] J. Gray and B. Rumpe: Compositional model 
analysis. In: Journal of Software and Systems Modeling 
(SoSyM). Springer Berlin/Heidelberg. Volume 19(2), Pages 
261–262, 2020.

Contents of this Issue

1.	 SEFM 2019 Special Section
	 Guest Editors: Gwen Salaün and Peter Csaba Ölveczky
2.	 Regular Papers

•	 "An improved approach on the model checking for 
an agent-based simulation system" by Yinling Liu, 
Tao Wang, Haiqing Zhang, and Vincent Cheutet

•	 "Modeling cultures of the embedded software indus-
try: feedback from the field" by Deniz Akdur, Bilge 
Say, and Onur Demirörs

•	 SoSyM First Paper at MODELS 2020: "Claimed 
advantages and disadvantages of (dedicated) model 
transformation languages: a systematic literature 
review" by Stefan Götz, Matthias Tichy, and Raf-
faela Groner

•	 "Modeling and simulation of the IEEE 802.11e wire-
less protocol with hidden nodes using Colored Petri 
Nets" by Estefania Coronado, Valentín Valero, Luis 
Orozco Bargosa, Maria Emilia Cambronero, and 
Fernando L. Pelayo

•	 "Consistent change propagation within models" by 
Roland Kretschmer, Djamel Eddine Khelladi, Rob-
erto Lopez-Herrejon, and Alexander Egyed

•	 SoSyM First Paper at MODELS 2020: "Specifica-
tion and automated verification of atomic concurrent 
real-time transactions" by Simin Cai, Barbara Gal-
lina, Dag Nyström, and Cristina Seceleanu.

Funding  Open Access funding enabled and organized by Projekt 
DEAL.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

https://www.sosym.org/editorials
https://www.sosym.org/editorials
http://creativecommons.org/licenses/by/4.0/

	Reflections on the standardization of SysML 2



