
Vol.:(0123456789)1 3

Software and Systems Modeling (2019) 18:3189–3191
https://doi.org/10.1007/s10270-019-00751-y

EDITORIAL

Models as the subject of research

Jeff Gray1 · Bernhard Rumpe2

Published online: 27 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

It is said that in the times before Plato, mathematics was only
a vehicle to solve practical problems. Plato himself, how-
ever, identified mathematics as a pure subject of research,
with the observation that the beauty of mathematical theo-
ries was of deep intrinsic value to be developed and refined
independent of practical application. This spawned math-
ematics as a field of research, which also led to many more
practical applications as a result.

Computer science has a much younger history. Some
early approaches to general-purpose programming (e.g.,
Charles Babbage’s mechanical general-purpose computer in
the 1800s, the Analytical Engine, and Ada Lovelace’s first
algorithms) are the most well-known examples. However,
computer science (or better: informatics) really emerged in
the twentieth century. Informatics started as a tool to help
with other science and mathematics investigations. When
the increasing complexity became clear, informatics became
the target of its own research area with beautiful results in
various subdomains.

Modeling, however, is much older. Conceptual models
are omnipresent in philosophy, physics, chemistry, and many
other inquiry-based disciplines. Physical manifestations of
models were used frequently in building construction. The
term “model” had an early historical connection to the con-
struction of churches, where a model was a 1:10 reduced
wooden version of the church to be built. From the great
inventor Da Vinci, we still have many drawings that model
surprising and smart machines—even though many of them
have never been built. The authors of this editorial, however,
are not aware of the topic of modeling as its own subject or
research area in these earlier centuries.

The concept of a model needed more formalization
when a specific semantics was required, such as modeling
of systems and software. The most widely used definition of
“model” was coined by Stachowiak only in 1973. Program-
ming theory and semantics definitions needed a precisely
defined notion of a well-formed piece of code. This notion
also carried over to other forms of digitally communicated
models. This includes Petri Nets in their various forms,
automata and statecharts, class diagrams, action languages,
and other forms of modeling languages. The formal meth-
ods domain (including logic) and the programming language
domain (in particular, compiler construction) in informatics
were the earliest to put some focus on the value of models
and explicitly defined modeling languages. Software engi-
neers and database administrators also relied upon models
in various representations, focusing on the practical use of
restricted forms of models. Interestingly, modeling tools
have been a core product offered by commercial vendors
since the beginning of the software industry. In fact, the first
software product sold independently of a hardware package
was Autoflow, which was a flowchart modeling tool devel-
oped in 1964 by Martin Goetz of Applied Data Research.

The use of models was widely discussed in the software
engineering domain during the 1980s and 1990s, where a
variety of different modeling languages (e.g., Booch’s clouds
and Rumbaugh’s object models) were adopted. Around
1994, the overlap of common concepts across the various
modeling languages pointed to the need for a unification of
the different languages. The “methods wars”, which were
intensely discussed at the OOPSLA conferences during the
1990s, were finally resolved into a standardization effort,
first called the “Unified Method” and later leading to the
“Unified Modeling Language” (UML). During this crucial
period of unification, it became clear that defining such a
standard would not be an easy task. A research community
emerged that became interested in studying models and the
UML as a core research subject area of its own.

In 1998, Jean Bézivin and Pierre-Alain Muller organized
the first UML workshop, “The Unified Modeling Language.
«UML»’98: Beyond the Notation” in Mulhouse, France,

 * Bernhard Rumpe
 bernhard.rumpe@sosym.org

 Jeff Gray
 jeff.gray@sosym.org

1 University of Alabama, Tuscaloosa, AL, USA
2 RWTH Aachen University, Aachen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00751-y&domain=pdf

3190 J. Gray, B. Rumpe

1 3

June 3–4, 1998. Based on the success of the scientific event
and the obvious need for further discussion and investiga-
tion, Robert France and Bernhard Rumpe (the founding crea-
tors of SoSyM; after Jean Bézivin came up with the idea)
organized the follow-up event “«UML»’99—The Unified
Modeling Language. Beyond the Standard” as the first inter-
national conference specific to software modeling, held in
Fort Collins, Colorado (USA) in October 28–30, 1999. Some
general questions that were discussed during this nascent
period of modeling research included:

• What is a good UML modeling language?
• Concentration on core modeling constructs or elaborate

comfort within UML?
• How to integrate orthogonal sublanguages?
• Semantics of UML sublanguages?
• How to compose, refine, and translate UML models?
• How to build reliable tooling for the UML with degrees

of automation?
• How to teach UML?
• What are appropriate methods that use UML?
• How to use UML for variability modeling, components,

or frameworks?
• How to positively improve the standard definition?

In 2005, the UML series of conferences was broadened
to the general question of what defines a good modeling
language. The focus remained on the development of soft-
ware, but because software usually is embedded in a social,
technical, or business context, various domains inside and
related to informatics were more deeply involved. Therefore,
the 2005 edition of the conference was renamed to “Model
Driven Engineering Languages and Systems” using the acro-
nym “MoDELS/UML” and held in Montego Bay, Jamaica,
in October 2005. The above questions were discussed not
only for the UML standard, which had at that time become
relatively stable (and incomplete in terms of practical adop-
tion, with many existing UML tools only partially satisfying
many of the users needs). The MODELS conference name
change also recognized the emergence of domain-specific
modeling languages (DSMLs) that were not specifically tied
to the UML. The increased interest in DSMLs helped to
add a new research focus on language definition and seman-
tics, as well as the usage and engineering of such languages
(e.g., for testing, code synthesis, simulation, and artifact
transformation).

Many recent publications use modeling as a contri-
bution to a specific application domain, but much of the
modeling research literature also concentrates on modeling
languages as a core subject of study (rather than just a
vehicle to study something else). As a consequence, many
new conferences over the past decade have emerged that
are centered around modeling themes, which have been

hosted by SoSyM as special issues (e.g., ECMFA, ICMT,
and the DSM workshop series). We can safely state that
since the early UML discussions at OOPSLA in the 1990s
and the start of the MoDELS/UML series of conferences,
models and modeling languages have become the subject
of study of research on their own, leading to hundreds of
Ph.D. dissertations across the world. An emerging focus
has been to transfer the research results into practice by
building industrial-strength and robust commercial mod-
eling tools.

It is equally important to understand what models,
denoted in explicit and purposeful modeling languages, can
do for engineers or scientists beyond pure software devel-
opment. It is time to understand how the digital models of
informatics can be merged with the continuous calculus of
control theory, the geometric models of mechanical engi-
neering, and how to use behavioral modeling with uncer-
tainty, underspecification, variants, and high-configurability
of models at runtime. Physical and chemical laws can be
understood as models of the world, and software controlling
some part of it needs an integrated understanding.

With only a few decades of existence, there is much for
the modeling research community to do. This is why we
expect SoSyM to grow further and to become and remain the
primary venue of articles focusing on modeling and mod-
eling languages—on a more formal, as well as applied with
a technological focus. We look forward to the future submis-
sion of exciting research to SoSyM!

1 Content of this issue

This issue contains an Expert’s Voice and 12 Regular papers
as follows:

• Expert’s Voice
• “Contents for a Model-Based Software Engineer-

ing Body of Knowledge” by Antonio Vallecillo, Loli
Burgueño, Federico Ciccozzi, Michalis Famelis, Gerti
Kappel, Leen Lambers, Sebastien Mosser, Richard
Freeman Paige, Alfonso Pierantonio, Arend Rensink,
Rick Salay, Gabriele Taentzer, and Manuel Wimmer.

• Regular Papers
• “Multi-view approaches for software and system

modeling: a systematic literature review” by Antonio
Cicchetti, Federico Ciccozzi, and Alfonso Pieranto-
nio.

• “Privacy-enhanced BPMN: enabling data privacy
analysis in business processes models” by Pille Pul-
lonen, Jake Tom, Raimundas Matulevicius, and Aivo
Toots.

3191Models as the subject of research

1 3

• “Trade-off analysis for SysML models using deci-
sion points and CSPs” by Patrick Leserf, Pierre De
Saqui-Sannes, and Jerome Hugues.

• “A comparative study of students and professionals
in syntactical model comprehension experiments” by
Mohamed El-Attar.

• “Modeling compliance specifications in linear tem-
poral logic, event processing language and property
specification patterns: a controlled experiment on
understandability” by Christoph Czepa, Amirali
Amiri, Evangelos Ntentos, and Uwe Zdun.

• “Integrated revision and variation control for evolv-
ing model-driven software product lines” by Felix
Schwägerl and Bernhard Westfechtel.

• “Improving manual reviews in function-centered
engineering of embedded systems using a dedicated
review model” by Marian Daun, Thorsten Weyer,
and Klaus Pohl.

• “Model execution tracing: a systematic mapping
study” by Fazilat Hojaji, Tanja Mayerhofer, Bah-
man Zamani, Abdelwahab Hamou-Lhadj, and Erwan
Bousse.

• “ChronoSphere: a graph-based EMF model reposi-
tory for IT landscape models” by Martin Hausler,
Thomas Trojer, Johannes Kessler, Matthias Farwick,
Emmanuel Nowakowski, and Ruth Breu.

• “Broadened support for software and system model
interchange” by Catalina Lladó and Connie Smith.

• “An approach for bug localization in models using
two levels: model and metamodel” by Lorena
Arcega, Jaime Font, Oystein Haugen, and Carlos
Cetina.

• “A UML Profile for the Design, Quality Assessment
and Deployment of Data-intensive Applications” by
Diego Perez-Palacin, Jose Merseguer, Jose Requeno,
Michele Guerriero, Elisabetta Di Nitto, and Damian
Tamburri.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Models as the subject of research
	1 Content of this issue

