
Software & Systems Modeling (2018) 17:1053–1054
https://doi.org/10.1007/s10270-018-0694-1

EDITORIAL

Agile model-based system development

Jeff Gray1 · Bernhard Rumpe2

Published online: 24 August 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Our journal is called “Software and Systems Modeling,” but
when we look at most of the papers that have been published
in SoSyM recently, the focus is much more on software than
on other kinds of systems. It is worth a fresh look at how
other engineering disciplines use models.

In fact, modeling is at the heart of almost any engineer-
ing discipline. Thus, it is not surprising that our engineering
colleagues have developed a detailed portfolio of modeling
techniques to describe their systems in various perspectives,
viewpoints, and abstractions. Furthermore, a plethora of tools
has been developed to assist practitioners with each of the
individual modeling languages. Colleagues from traditional
engineering disciplines model many more aspects of their
systems than software developers.

However, the state-of-the-art in systems modeling has
several challenges, where each modeling aspect and view
is often assisted by an individual modeling and analysis
tool. Data exchange between the tools is complicated, even
though mostly automated, but suffers from concerns about
robustness, completeness of the mappings between the mod-
els, as well as regular version upgrades of tools. A second
problem is that these mappings between models are not
easy to standardize, because different projects use the same
modeling languages in different forms (semantics), which
enforces configurable mappings or individually developed
translations per project. We have discussed these aspects on
modeling partially in previous editorials (please see http://
www.sosym.org/editorials/).

An important aspect of a modeling toolchain concerns the
“length” of the toolchain—the longer the toolchain, the more
information that may be added along the toolchain, poten-
tially reducing the agility of the development process. Agility
is a well-known software development technique that dom-

B Bernhard Rumpe
bernhard.rumpe@sosym.org

Jeff Gray
jeff.gray@sosym.org

1 University of Alabama, Tuscaloosa, AL, USA

2 RWTH Aachen University, Aachen, Germany

inates smaller- and medium-sized software projects. Many
projects have demonstrated that an agile, lean development
process has merits in terms of cost reduction, quality, and
time to market. Driven by the large software companies in
Silicon Valley that have a development and innovation pace
far beyond traditional engineering, there are currently several
attempts to adapt agility to systems development, with exam-
ples including smart phones, autonomous and electrified cars,
and also medical devices and home automation. Therefore,
it is worthwhile to revisit the most important ingredients
required by an agile process, which are:

• Lean processes with as little documentation overhead as
possible,

• Immediate feedback as soon and early as possible,
• Feedback on all activities,
• Automation of many development tasks,
• Many, small iterations,
• Self-responsibility for developers to do whatever seems
best at the current situation.

Traditional engineers use system models to design and
understand the product through analysis and automation of
engineering tasks. Therefore, models should be more than
just documentation artifacts. Each model that captures a per-
spective of the project should either become a part of the
product construction or should be used for automated vali-
dation and test quality management. Although synthesizing
software products from models is a common practice in the
software engineering domain, physical products can also be
produced (e.g., with appropriate 3D printers). In systems
modeling, simulations of the physical product in various
abstractions and for various validation and testing purposes
can be a core benefit of modeling. Simulations help to under-
stand product sustainability (e.g., deterioration), usability of
a product in its context (e.g., autonomous driving), and many
additional aspects that are more difficult to explore as “what-
if” analyses withoutmodeling support. The benefit ofmodels
and simulation occurs when validation steps are available on
very early versions of a model and not only on a complete

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0694-1&domain=pdf
http://www.sosym.org/editorials/


1054 J. Gray, B. Rumpe

product specification. It is not evident that current systems
modeling languages and tools are well prepared for this kind
of progressive use of agility across model abstractions over
the system development process.

Furthermore, mapping models from one tool into another
and extending the model with additional information along
the toolchain leads to a “one-shot” mapping that is simi-
lar to the traditional waterfall model. This is completely the
opposite of agile, where iterations are important and re-doing
work, such as model extension, must be avoided. In systems
modeling, a reusable set of models should be free of redun-
dancy and complement each other. It also seems that most
systemsmodeling toolchains onlywork in one direction. That
means feedback from an advanced analysis or simulation
technique in one tool to other tools across the toolchain is
either manual or is not possible, posing another important
obstacle for agile modeling of traditional engineering sys-
tems.

From these observations, traditional systems development
has not reached the maturity of agile software develop-
ment. The challenges of integrating a sequential modeling
toolchain provide little opportunity for feedback to earlier
models. Instead, a “cocktail” of complementary tools is
needed to focus on the domain-specific aspects of the prod-
uct, control redundancy, and allow almost permanent and
immediate feedback through all forms of consistency. Other
high-level analyses and automated simulations are also desir-
able, such that systems engineers are freed from repeated and
tedious tasks so that they can concentrate fully on inventions
and designs of their systems.

Software and systems engineers need to collaborate
closely on these topics to better understand each other’s needs
and strengths. We hope that future SoSyM authors can make
significant contributions to these new forms of agile, model-
based systems development.

1 Content of this issue

This volume contains the following 12 papers:

• “Encoding process discovery problems in SMT” by Marc
Solé and Josep Carmona

• “Reusing metamodels and notation with Diagram Defini-
tion” by Conrad Bock and Maged Elaasar

• “On submodels and submetamodels with their relation:
a uniform formalization through inclusion properties” by
Bernard Carré, Gilles Vanwormhoudt, and Olivier Caron

• “VMTL: a language for end-user model transformation”
by Vlad Acretoaie, Harald Störrle, and Daniel Strüber

• “Amodel-driven development approach for context-aware
systems” by Imen Jaouadi, Raoudha Ben Djemaa, and
Hanene Ben-Abdallah

• “Formalised EMFTVM bytecode language for sound ver-
ification of model transformations” by Zheng Cheng,
Rosemary Monahan, and James Power

• “Scope in model transformations” by Maris Jukss, Clark
Verbrugge, Maged Elaasar, and Hans Vangheluwe

• “Holistic security requirements analysis for socio-
technical systems” by Tong Li, Jennifer Horkoff, and Jon
Mylopoulos

• “An approach to clone detection in sequence diagrams and
its application to security analysis” by Manar Alalfi, Eliz-
abeth Antony, and Jim Cordy

• “On the automated translational execution of the action
language for foundational UML” by Federico Ciccozzi

• “Efficient parallel reasoning on fuzzy goal models for
run time requirements verification” by George Chatzikon-
stantinou and Kostas Kontogiannis

• “The Train Benchmark: cross-technology performance
evaluation of continuous model queries” by Gabor
Szarnyas, Benedek Izso, Istvan Rath, and Daniel Varro.

123


	Agile model-based system development
	1 Content of this issue




