
Software & Systems Modeling (2018) 17:713–714
https://doi.org/10.1007/s10270-018-0685-2

EDITORIAL

UML customization versus domain-specific languages

Jeff Gray1 · Bernhard Rumpe2

Published online: 9 June 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

We recently collaborated again with 40 developers on a large
automotive architecture project. In addition, we discussed
some of the characteristics of the project with other modelers
and consultants. Several observations emerged that wewould
like to share.

First, modeling is a complex skill that requires much prac-
tice and cannot simply be adoptedbydrawingdiagrams.Even
experienced programmers have challenges when developing
models that are significantly more abstract than just a repeti-
tion of code structures and algorithms. When using explicit
modeling languages for software in amechanical engineering
company,we observed thatmost of themodelerswith domain
knowledge are not experiencedwith even basic fundamentals
of software engineering. The lack of foundational software
engineering knowledge leads tomany different problems that
can be found in the models produced, such as:

• The models are either overly abstract or much too fine-
grained.

• The models have an ill-balanced structure and therefore
cannot be used for obtaining an overview of the available
information easily.

• Many model elements are used incorrectly, i.e., the
intended semantics does not correspond to the actual lan-
guage semantics, which reduces the value of a model to
individual interpretation.

• Sometimes, much of the relevant information is encoded
as comments and very little structure and especially
behavioral information is given in the model itself.

• Engineers with domain expertise often focus on creating
models for their own specific situation and are usually not
concerned with structuring their models into reusable,
modular artifacts. This occurs far too often across many

B Bernhard Rumpe
bernhard.rumpe@sosym.org

Jeff Gray
jeff.gray@sosym.org

1 University of Alabama, Tuscaloosa, AL, USA

2 RWTH Aachen University, Aachen, Germany

different industries. Even though some engineers miss
opportunities to generalize their solutions to other situ-
ations or products (even within their same domain), the
modeling languages need to also provide more explicit
support for modularity to encourage best practices that
incorporate concepts such as interfaces and encapsula-
tion at the model level.

Second, many of the problems that we observed from this
project are not new. The standard way of improving the pro-
cess is to provide detailed guidelines at each level and phase
in the modeling process (e.g., which model elements should
be used, how they should be connected, how complete and
accurate the model should be). Such guidelines have been
helpful with new software engineers focused on coding prac-
tice. For example, object-oriented programming languages
provide language support and structures for separating con-
cerns. Guidelines have helped to make code readable (e.g.,
layout, names, structural nesting), design patterns document
experiential reuse opportunities supporting best practices in
code structure, encapsulation and clear object-oriented inter-
faces improve understandability and reuse.

To many researchers and practitioners, it is clear that sim-
ilar guidelines are necessary when using a general-purpose
modeling language, such as UML for software or SysML for
embedded software systems that control mechanical devices.
Both languages are designed for general-purpose use. The
tool developers that adopt these languages strive to make
their tools applicable for a broad set of domains and projects.
As a consequence, the tool support is often generic and lacks
methodical assistance, if provided at all. Thus, the situation
is very similar to implementation needs with programming
language usage: guidelines are beneficial and sometimes nec-
essary to manage the inexperience of engineers who have
domain expertise, but little foundational software engineer-
ing knowledge.

However, there is an unfortunate difference between pro-
grammers of general-purpose programming languages and
modelers using general-purpose modeling languages (e.g.,
SysML). The latter usually know very much about the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0685-2&domain=pdf


714 J. Gray, B. Rumpe

domain, but lack knowledge and experience with the sup-
porting modeling language. Domain experts often do not
really internalize the guidelines and therefore have to look
up (or ignore) the guidelines every time they start modeling.
But more importantly, domain experts often have many other
responsibilities and models are a smaller part of their daily
routine. This restricted time is a detriment toward growing
domain experts into modeling experts. This situation adds
to the awkwardness of modeling the structure and behavior
in a general-purpose modeling language, such as UML or
SysML.

As a third observation and consequence of the first two
observations, domain experts who create models in domains
that are not related to information technology concerns need
methodical assistance from their tools. Tools should con-
structively apply the methodical guidelines, thus preventing
modelers from having to lookup the guidelines repetitively.
For example, tools need to be tailored in such a way that only
those modeling elements appropriate in a specific situation
are presented as options for the domain experts construct-
ing the model. Potentially new views need to be defined,
with encapsulation mechanisms made more explicit in the
tools, and assistance in tracing the connections across the
abstractions represented in the models. Modeling tools need
to offer multiple opportunities for customization, extension,
and in particular, restriction. After such an extensive cus-
tomization, the general-purpose language may emerge as a
domain-specific language (DSL) based on UML or SysML.

Unfortunately, it is not always clear whether the underly-
ing DSLs can be generalized to the domain or the company,
or if they are highly specific to each project. However—
and this is the fourth observation—an experienced “tool-

smith” or “method developer” may be needed to assist the
domain experts in customizing the tools. For large system-
development companies, it might be useful to have a group
of toolsmiths that concentrate primarily on this form of cus-
tomization.

Finally, as a fifth and more general observation for the
modeling community, it seems to be an interesting question
whether it is better to develop a new DSL from scratch by
adding modeling elements iteratively, or start with a general-
purpose modeling language and restricting it until it fits the
specific use.

We might see a yo–yo effect here: in the 1990s, many
methods and modeling languages were popularized. Then,
for a while, unification based on UML was very helpful.
Then, DSLs that were developed from scratch began to
emerge. The next trendmay be a repository of UML/SysML-
based DSLs that actually unify DSL and UML/SysML
thinking.

Thanks for the input from Stefan Kriebel (BMW) and
Nikolaus Regnat (Siemens).

Content of this Issue

This volume contains the MODELS 2015 Special Issue with
Jordi Cabot and Alexander Egyed as guest editors. Two reg-
ular papers are also included:

• “Case-based exploration of bidirectional transformations
in QVT Relations” by Bernhard Westfechtel.

• “VisualmodelingofRESTful conversationswithRESTalk”
by Ana Ivanchikj, Cesare Pautasso, and Silvia Schreier.

123


	UML customization versus domain-specific languages
	Content of this Issue




