Softw Syst Model (2017) 16:927-928
DOI 10.1007/s10270-017-0621-x

@ CrossMark

EDITORIAL

The importance of flow in software development

Jeff Gray! - Bernhard Rumpe?

Published online: 5 September 2017
© Springer-Verlag GmbH Germany 2017

From social and psychological theories and studies [1],
we know that there exists a mental state called “flow” that
allows individuals to concentrate deeply on a specific task
without noticing the surrounding environment or the time,
while remaining fully aware of the current work that they are
doing.

In a recent TV broadcast about cognitive brain func-
tion, several illustrative examples were given, such as a free
climber who says that he is at peak performance when he
completely forgets about the world and the danger asso-
ciated with the climb, but fully concentrates on the rocks
and all the next moves he is planning to make. It was also
shown that the world record holders in speed tasks, such as
stacking cubes or solving Rubic’s Cube, do not use their cere-
brum very intensively when executing the speed task. Only
a small, but obviously efficient, part of the brain is concen-
trating on the task to be executed. Similar examples can be
found among athletes and musicians who may occasionally
get into a “groove” where performance and concentration
reach a peak level.

Software developers that fully concentrate on their work
also report this kind of flow, where only the relevant parts of
the brain are focused on the core task. We can argue that soft-
ware development is more complex and probably involves
more parts of the brain than speed stacking, but it also seems
that software development becomes more productive when

B Bernhard Rumpe
bernhard.rumpe @sosym.org

Jeff Gray

jeff.gray @sosym.org
1 University of Alabama, Tuscaloosa, AL, USA
2 RWTH Aachen University, Aachen, Germany

the developer has the ability to reach flow for a large part of
his or her working time.

This ability to reach and sustain flow depends partially
on the developer’s own circumstances; for example, whether
they get enough sleep, have little to no stress at home, and
lead a safe and enjoyable life. To a large extent, this ability
also depends on the concrete working circumstances. Is the
room quiet? Can the developers work on their own for a long
time without disturbances by phones, emails, or background
noise in the room? It is also important that the developer is
in a constant state of focus while thinking of the important
issues that enable him or her to execute their task. In the
software development context, it is helpful if the tooling aids
productivity and does not slow down the focus time (e.g.,
compilation time should not take long). Agile development
methods have the potential to capitalize on the opportunity of
software developers to get into the flow and provide continu-
ous improvement to the system they are developing. Mihaly
Csikszentmihalyi also argues that the flow is very helpful
to engage in creative discovery of new ideas and inventions
[1]. Software development can benefit from flow because the
need to identify an optimal architecture and the best structure
for object interactions can be a creative activity.

Agile development methods also thrive from early and
immediate feedback: The software should always be able to
compile and to run the associated tests. To remain in the flow,
it is helpful that compilation and test executions are quick,
because otherwise developers may become distracted by the
temptation to read emails, go for the next coffee, take an early
lunch, or engage another co-worker in a conversation. Soft-
ware development tools are vitally important for productive
development and keeping developers in the flow zone.

When considering the current state of tooling for model-
based software development (compared to just coding), an
opportunity exists for new capabilities that help developers

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0621-x&domain=pdf

928

J. Gray, B. Rumpe

achieve flow. Currently, many tools are able to help with cre-
ating and editing large models, perform partial consistency
checks, and generate code for multiple platforms. But in
comparison with the available tooling for traditional general-
purpose programming languages, there is still a large gap
in tool capabilities. Models are often interacted with in a
monolithic form, i.e., all models are processed in batch each
time a code generation request is started. The time it takes
to perform code generation and model checking may cause
a disruption in the flow. If a code generation process (for a
large industrial model, or a set of models within the project)
takes longer than drinking a cup of coffee, software develop-
ers that use model-based techniques may lose their flow of
concentration. They will not get the same feeling of satisfac-
tion that would result from a better transition across the tool
usage, which may hamper productivity when delays emerge.
We hope that modeling tools will improve the opportunity for
developers to achieve flow through improved tool implemen-
tation, but also by better modeling languages that enhance
modularity and incremental compilation.

We hope that you have fun and remain in the flow when
reading the articles in this issue!

1. Csikszentmihalyi, M.: Finding Flow: The Psychology of
Engagement with Everyday Life. Basic Books, New York
(1997)

Content of this issue
This issue contains the following twelve regular papers:
e “From software extensions to product lines of dataflow

programs” by Rui Gongalves, Don Batory, Jodo Sobral,
and Taylor Riché.

@ Springer

“An approach based on the domain perspective to develop
WSAN applications” by Taniro Rodrigues, Flavia Deli-
cato, Thais Batista, Paulo Pires, and Luci Pirmez.
“Generating process model collections” by Zhigiang
Yan, Remco Dijkman, and Paul Grefen.

“Promoting traits into model-driven development” by
Vahdat Abdelzad and Timothy Lethbridge.

“Process mining using BPMN: relating event logs and
process models” by Anna Kalenkova, Wil M.P. van der
Aalst, Irina Lomazova, and Vladimir Rubin.

“FLAME: a formal framework for the automated analysis
of software product lines validated by automated spec-
ification testing” by Amador Durdn, David Benavides,
Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés.
“Towards an integrated formal method for verification of
liveness properties in distributed systems: with applica-
tion to population protocols” by Dominique Mery and
Mike Poppleton.

“Model checking multi-level and recursive nets” by
Mirtha Fernandez Venero and Fldvio Corréa da Silva.
“On the formal interpretation and behavioural consis-
tency checking of SysML blocks” by Andrew Simpson
and Jaco Jacobs.

“Variability extraction and modeling for product vari-
ants” by Lukas Linsbauer, Roberto Lopez, and Alexander
Egyed.

“A model framework-based domain-specific composable
modeling method for combat system effectiveness simu-
lation” by Xiaobo Li, Yonglin Lei, Weiping Wang, Feng
Yang, and Yifan Zhu.

“A novel model-based testing approach for software
product lines” by Ferruccio Damiani, David Faitelson,
Christoph Gladisch, and Shmuel Tyszberowicz.



	The importance of flow in software development
	Content of this issue




