
Softw Syst Model (2017) 16:625–626
DOI 10.1007/s10270-017-0605-x

EDITORIAL

Logic formulas in models

Jeff Gray1 · Bernhard Rumpe2

Published online: 20 June 2017
© Springer-Verlag GmbH Germany 2017

Many modeling languages, especially graphical ones, con-
centrate on the ease of expression in specifying certain
aspects of a system that need to be developed. However, this
often leads to a reduced ability to express complex relations
between particular elements in the model. This is certainly
obvious when using UML’s class diagrams, but also occurs
in specification-oriented versions of state machines, activity
diagrams, business process models, and variants of architec-
tural description languages. The restricted ability to describe
additional constraints usually leads to the demand for an
expressive logic that is used on top of the underlying mod-
eling language. The Object Constraint Language (OCL), as
part of the UML, is such an example. In the context of class
diagrams, it allows the description of invariants in the form of
relations between attributes, as well as structural restrictions
between objects during runtime.

A logic formula is either true or false. In terms of logic,
there is no other possibility. The Law of the Excluded Middle
(i.e., either a formula is true, or its negation is true—there is
no third possible value) is a core axiom in logic and has been
accepted by logicians throughout the deep history of devel-
opment of mathematics and philosophy. The truth values are
of such importance that many programming languages have
a built-in type that represents these two values; for example,
a “Boolean” (going back to George Boole, 1815–1864) type
that has values “true” and “false”.

Computers, like humans, have restrictions in their abili-
ties to deduce truth. In particular, the theory of computability
allows us to understand when a logic formula is true, but the

B Bernhard Rumpe
bernhard.rumpe@sosym.org

1 University of Alabama, Tuscaloosa, AL, USA

2 RWTH Aachen University, Aachen, Germany

computer does not recognize this when “executing” the for-
mula. Hence, logicians have tried to describe this behavior of
computers by introducing denotational semantics as a form
of mapping each syntactic construct to the result obtained
when the computer executes the formula. In the case of a logic
formula, there are three potential values in the notation and
semantics: True, false and “undef”. This third value, called
“undef”, is a virtual construct of humans that defines a deno-
tational semantics for languages. “Undef” occurs when the
computer does not terminate, when emulating the formula,
or terminates in an extraordinary state (e.g., an exception).
Therefore, “undef” in its purest sense is not part of the syntax
of the language itself.

“Undef” is an interesting construct when reasoning about
the behavior of programs. Many verification tools have
explicitly added “undef” as an element of any type, because
the execution of any expression may fail. Thus, the Boolean
type suddenly becomes three-valued. This leads to interest-
ing challenges at the logic level. For example, the traditional
logic laws (e.g., commutativity, associativity, and idempo-
tence of “and” and “or”) should be retained. The number of
cases to be handled in a proof, as well as when intellectually
designing a system, should be small; handling of “undef”
should not introduce too many exceptions and extra cases
to handle. Please note that “and” has four cases in 2-valued
logics, but nine cases in 3-valued logics, which is more than
twice the potential values in a 2-valued logic.

Different solutions have been proposed (e.g., extending
logics to three values, like in Kleene logic, or strictly sepa-
rating the Boolean type to 3 elements and the Truth values to
2 elements). All of the solutions have individual advantages
and disadvantages, sometimes very much dependent on the
purpose and use of the formula, such as: when a formula is
used mainly for programming, when a formula is for speci-
fying in an abstract way and then, for example, deriving tests

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0605-x&domain=pdf


626 J. Gray, B. Rumpe

from a specification, or for verifying certain properties in
critical parts of a system.

“Undef” is also an interesting construct when modeling
the desired behavior from a safety or security point of view.
For example, robustness to some extent explicitly refers to
the definedness of functionalities. This led to a need to add
“undef” as an explicit value to a modeling language, but also
to certain programming languages. The very famous “null”
in many programming languages is such a construction. The
logic of OCL also provides explicit mechanisms to describe
the absence of a truth value by “null” and invalidity of a
formula by “invalid”. This allows the convenient expression
of certain effects, for example when retrieving data from a
database, where “null” describes missing data. Thus, it can
be seen as a valid mechanism to extend forms of types to
these values. However, from the denotational semantics point
of view, these are just ordinary real values and again the
virtual value “undef” is necessary to describe nonterminating
execution. The OCL Boolean type with all of these options
has roughly five values (“true”, “false”, “invalid”, “null” and
of course the virtual “undef”).

It is necessary to clearly separate a Boolean type, which is
part of the underlying programming language and thus of the
system under development, from the Truth values. The Truth
values are not part of the system under development and need
not be used to type attributes or variables, but describe the
logical outcome of the meaning of a formula. Tertium non
datur.

Thus we postulate:

The truth shall not be compromised by alternate truth
and false values.

When we use a logic formula during the execution of a
test, thenwe are confronted againwith the restricted ability to
deduce truth computationally (especially in non-terminating
evaluations). However, we believe that in a modern lan-
guage, such as Java, where many potential sources for
non-termination are eliminated, this is not a practical prob-
lem anymore. For example, infinite loops are easy to detect
by humans and infinite recursion may terminate eventually

with a StackOverflow exception. If the execution of a logic
formula terminates with an exception, the formula is simply
false.

Thus, we think it is necessary formodels, but first of all for
designers of modeling languages including logics, to explic-
itly separate the truth values from the Boolean type. It also
does not make sense to try to inject everything into compu-
tational types, because it complicates the logic formulas to
be defined beyond the intrinsic necessity.

Content of this issue

This issue contains the theme section of Business Process
Modeling, Development, and Support (BPMDS’2014): “The
Human Perspective in Business Processes”, with Selmin
Nurcan and Rainer Schmidt as Guest Editors. The included
papers are described in the Guest Editorial.

In addition, this issue contains the following regular
papers:

• “A case study about the improvement of business pro-
cess models driven by indicators” by Felix Garcia, Laura
Sanchez-Gonzalez, Francisco Ruiz, and Mario Piattini.

• “Refinement-based Validation of Event-B Specifica-
tions” by Atif Mashkoor, Faqing Yang, and Jean-Pierre
Jacquot.

• “Design notations for secure software: a systematic lit-
erature review” by Alexander van den Berghe, Riccardo
Scandariato, Koen Yskout, and Wouter Joosen.

• “A graph-theoreticmethod for the inductive development
of reference processmodels” by JanaRehse, Peter Fettke,
and Peter Loos.

• “An integrated semantics for reasoning about SysML
design models using refinement” by Lucas Lima, Alvaro
Miyazawa, Ana Cavalcanti, Márcio Cornélio, Juliano
Iyoda, Augusto Sampaio, Ralph Hains, Adrian Larkham,
and Vaughan Lewis.

• “Supporting aspect orientation in business process
management—From processmodelling to process enact-
ment” byAmin Jalali,Amin,ChunOuyang, PetiaWohed,
and Paul Johannesson.

123


	Logic formulas in models



