
Softw Syst Model (2013) 12:665–668
DOI 10.1007/s10270-013-0383-z

EDITORIAL

Why it is so hard to use models in software development:
observations

Robert France · Bernhard Rumpe · Martin Schindler

Published online: 11 October 2013
© Springer-Verlag Berlin Heidelberg 2013

In a previous editorial, we asked what modeling contributes to
the development process. We concluded that models are not
so much of value for themselves, but exist to improve certain
properties of the product, such as quality or maintainability,
or of the process, such as cost-efficiency and predictability.

In this editorial, we would like to report on specific find-
ings that are based on the reported and own experience with
some concrete modeling tools and frameworks of different
types (without naming them) and draw some conclusions for
further tool improvement.

The basic idea is simple: create a model in a source lan-
guage (e.g., a class diagram or a state machine), take a code
generator, and generate the code for it in a target language.
The idea behind is that the model is much simpler and thus
easier to write and assess than the resulting code. Some of
the reasons are that a model can abstract from the implemen-
tation details as well as from the technological platform as
well as from unnecessary details of the application domain.
We can “measure” this by comparing the size of the model
with that of the resulting code. And this indeed works and
helps.

But there are a lot of practical problems. Let us classify
and briefly discuss some of them:

Measurement of speedup: Comparing LOC of the generated
code with the number of syntactic concepts (or something
similar) used in a model is not easy: the size of the generated

R. France
Colorado State University, Fort Collins, Colorado, USA
e-mail: france@cs.colostate.edu

B. Rumpe (B) · M. Schindler
RWTH Aachen University, Aachen, Germany
e-mail: Bernhard.Rumpe@sosym.org

M. Schindler
e-mail: schindler@se-rwth.de

code can be impressive. But how much of it do we actually
use? How much would we actually write, if written by hand?
How much effort goes into the development or adaptation
of the generator? How much more familiar are we with the
target language compared to the modeling language and the
code generator? Do we know a good metrics for speedup
through the use of modeling tools? Does speedup only occur
in similar follow-up projects?

Integration of generated and handwritten code: One-shot
generators allow us to modify the generated code. This is
typical for code frames derived from class diagrams. Better
tools try mapping back and forth using round-trip engineer-
ing. This, however, seems to work to a very limited extend
only, especially when the conceptual distance between the
languages is small and appears to be somewhat brittle if unex-
pected modifications occur. A third approach is to not expose
the generated code to the developer. While this is similar to
the compiler approach, where assembler code is not seen
any more today, this approach does not work yet: first, hand-
written code usually must know about the generated code.
So developers have to inspect at least parts of the gener-
ated code. This code inspection could be reduced by gener-
ating “interfaces” for all APIs to be available and to describe
the generated code by some JavaDoc-like mechanism. Sec-
ond generation becomes useful when the generator knows
something about the technology stack being used. It ideally
encapsulates this stack such that the normal developer does
not have to know about it anymore. This requires the gener-
ation process often to be adapted by certain key developers
that thus need to be able to understand the generated code.

Selection of the target language and their concepts: The more
elaborate the target language and its frameworks, the better.
Generating Java is much easier than generating Assembler.

123



666 R. France et al.

But how many concepts should be used? Using visibilities,
type infrastructure or even generics in the target code can
become a nightmare when some concepts of the source lan-
guage, such as dynamic extension of the attribute section
or type adaptation, do not fit. Encoding these concepts can
become tough when the underlying infrastructure should be
retained. This is why some generators use reflection when
targeting Java: this is easier and more systematic for the gen-
erator, but lacks understandability. If the generated code is
invisible for the developer, it need not obey any coding guide-
lines. If the generated code is “correct by generation” any-
way, it need not deal with encapsulation (visibility) issues or
the underlying typing system at all. It could directly create
untyped, generic code or use reflection when needed, quite
like assembler, and may be mimic its own typing structure.
But what if the code is not correct or the generator needs to
be adapted?

Modularity of the generated code: Encapsulation of the gen-
erated code is necessary to prevent the developer having to
inspect it (at least if he/she is only using it) and allows us to
repeatedly generate if the model changes. We discussed this
in detail in the editorial in issue 12–3 because we feel this is
a very important and for modeling languages still not a very
well-understood concept.

Architecture of the System: Let us assume that generated code
remains unchanged. How do we organize the system: tradi-
tionally, systems are defined in subsystems sharing common
data structures and communication and are well structured in
packages. Furthermore, architectural styles such as the layer
architectures allow us to organize the application core inde-
pendently of any GUI and the persistence. Keeping the archi-
tecture clean when using code generation seems to require
a lot of discipline. But is this still an appropriate architec-
ture or do we need to come up with a different approach?
Please note, we discuss the dynamic object architecture at
runtime, the class dependencies at compile and generation
time as well as the package structure. The last two directly
relate to the question, whether handwritten code can depend
on generated code and vice versa.

Generic versus generative codes: Developers tend to avoid
generating clean and powerful solutions but to introduce
generic, handwritten solutions instead. Introducing a gen-
eration process is generally more work than just coding a
generic solution. With today’s languages—here, we refer,
e.g., to Java—generic solutions often become quite handy.
Mechanisms, like subtyping polymorphism, generics, and
powerful and dangerous reflection, allow developers to do
quite efficient things, with simple concepts like design pat-
terns up to Web frameworks with reflective examinations of
plain old Java objects (POJOs). When the languages, frame-

works, and tooling infrastructures become ever more generic,
do we then need generation at all? The state pattern is a direct
explicit representation of automata in code. Is it readable and
can we omit generating code from state machines? Can we
explicitly encode more modeling languages?

How to organize the development process (methodical part):
The classic activities of software development need to be
rethought if the coding activity does not happen anymore.
How do we ensure quality? What needs to be tested? What
are testing metrics? Ideally, the “executable” model replaces
the source code roles and should therefore be used as target
for quality assurance. Instead, our testing techniques mainly
focus on the code and therefore test developers (a) have to
understand the generated code and (b) much more tests are
necessary to cover the generated code than to “cover” the
source model. However, this is necessary anyway, if the gen-
erator is adaptive (see above).

How to organize the development process (technical part
1: automation): Automation is the key for speeding up the
development process. First, to be able to repeatedly execute
the generation, the generation process needs to be fully auto-
mated, e.g., through a script, an Ant configuration, or a tra-
ditional makefile. While those scripts nicely cooperate, e.g.,
with C compilers, modern languages like Java come with
semi-intelligent compilers that handle dependency manage-
ment on their own. This collides with dependency manage-
ment for source generation. Furthermore, there is neither a
logical rule nor an explicit connection between the model and
their resulting generated artifacts (which can be seen only by
examining the code generator). Therefore, it is not externally
derivable what needs to be generated again when parts of the
models change. Thus, efficient scripts are much harder or
even impossible to write. In practice, this leads to heavy and
complete regeneration or a generation that needs to be con-
trolled manually instead of a regeneration on demand only.
The first seriously slows down the development. The second
is very error-prone, as people tend to forget some manual
generation steps.

How to organize the development process (technical part
2: dependencies): Another problem is that the dependencies
are not only to be maintained for the generation of files, but
also for temporary cleanups. A full cleanup of all generated
classes in each generation step completely spoils agile devel-
opment speed. Dependency management needs to be part of
a generator. This must also work, e.g., in scenarios, where
many classes are generated from a class diagram. When a
class description is removed from the diagram, the regener-
ation needs to remove the old (generated) class too, but the
diagram itself does not contain any information about the old
class anymore. Thus, dependency management needs to be

123



Why it is so hard to use models in software development: observations 667

intelligent and needs to orchestrate all generation and com-
pilation processes.

How to organize the development process (technical part 3:
version control): Do not put generated files under version
control! When you want all developers to be able to regen-
erate, then conflicts on files generated under version control
cannot be avoided. One solution could be to put the generator
under version control or offer it as commonly and automat-
ically usable Web service such that each developer is able
to regenerate locally and generated files need not be version
controlled. A second best solution is that only one devel-
oper is allowed to regenerate. This seriously complicates the
development, when all developers are allowed to adapt the
models. We also saw an alternative, where the generation
process is done through the version control system: (1) check
in the source model, (2) a demon in the back does the gener-
ation, and (3) if successful (4), the generated code is checked
in, too. That also is a misuse of the version control as it
affects other developers before the code is being cleared. So,
not putting generated code under version control is the only
useful possibility in team-oriented development projects.

Generation using templates: yet another language: In order
to make generation adaptable, template languages such as
FreeMarker seem to be the appropriate tool. This introduces
a third language to be dealt with. Developers now need to
master models, target language, and FreeMarker templates.
Templates to some extent look like the target with extensions.
FreeMarker uses callbacks to Java. Java also has to provide
the underlying metamodel (abstract syntax) of the model.
The template language also needs control elements (loops,
if-then-else, template inclusions) as well as handling of the
data (typically strings, lists, maps). FreeMarker would allow
complex computations, but they should not be written there
to keep templates and therefore the code generator readable
and understandable. Instead, these computations should be
provided by the underlying metamodel. This enforces the
developer to become a tool smith and also define some Java
code for the metamodel. But is there a simpler yet powerful
alternative to templates or similar scripting languages when
generating source code?

Organizing templates: The metamodel, extra Java function-
ality on top of the metamodel, and the templates exhibit a
complex interplay that has to be mastered. Templates easily
become rather complex, in particular when alternative cases
or iterations need to be handled. Thus, templates need to be
structured into hierarchies of subtemplates. Accordingly, the
interplay between templates and the Java-based metamodel
becomes complex. A plug-in mechanism to integrate calcula-
tions is also necessary to allow such adaptive definitions. This
introduces lots of Java and template files and hence asks for

a precise management and documentation of the templates
and plug-in calculations.

The organization of templates needs to cope with several
dimensions: (a) a template operates on one node of the meta-
model of a certain type. (b) The result may be a complete
file or a part to be included in another file. (c) The generated
artifacts must conform to some concept (e.g., a nonterminal
or metamodel class) of the target language, e.g., a subtem-
plate can generate a complete class file, but can also produce
a statement, a block, an expression, an attribute or method
definition, an import statement, a package, or a list of those.
(d) Finally, subtemplates often assume context information
to be given, e.g., an expression template expects certain vari-
ables. How to manage knowledge about template and their
purposes?

Finally, there definitively is demand for a library of such
templates and plug-ins.

Quality management for templates: Assuming, we have an
adaptive development process: how do we keep the qual-
ity management simple? Some FreeMarker-based projects
demonstrate the complex structure of templates as discussed
above. Template engines like FreeMarker do not know any-
thing about their target language and can, thus, produce syn-
tactical nonsense. Control structures in templates make it
undecidable whether this can happen. Therefore, the correct-
ness of the generated result is checked after generation by
the compiler, which all too often finds illegal syntax, miss-
ing variables, or methods, etc., in the generated code. This
is too late and does not help to speed up the development.
Furthermore, tracing erroneous code back to the originating
template and template configuration is complex. “Debugging
templates” in the generation process could help when adapt-
ing templates.

Organizing generator libraries: We need various libraries
of complete or extensible generators for specific target plat-
forms, technologies, and purposes. But how do components
of such a generator library look like? How do extension mech-
anisms look like? Which documentation and set of configu-
ration parameters is needed for each generator to be easily
reusable and adaptable for different software projects? And
finally, a combination of generators could be used for one
software project as well.

Testing (or debugging) generated code: If the generation
process was successful, debugging of the product is another
important issue. If the error is identified and comes from the
generated code: how can it be traced back to the template or
the model source? Modularity of the generated code could
help a lot here. Furthermore, it is always better to run auto-
mated tests than to trace manually using debuggers. Model-
based debuggers are widely missing. It is a good approach

123



668 R. France et al.

to test the generator and its templates on a well-defined but
small set of source models before using it on real project
models. Automatic tests can then be reused when adapting
the generator. Another set of tests can be used for the gener-
ated application, assuming that the generated code is already
unit-tested and only integration tests are necessary. And by
the way, tests can be generated too, using appropriate test
models (different from the source models).

Integrated development environment (IDE): IDEs such as
Eclipse provide a tremendous amount of comfort to the devel-
opers. Editors can make use of highlighting, auto-completion,
quick navigation to definitions of methods/classes used, etc.
Compilation is done automatically and incrementally in the
background. Refactoring steps simplify larger restructurings
as well as consistent renaming operations. Programming lan-
guage infrastructures like for Java are very well elaborated
with their typing, visibility, and import mechanisms to con-
trol dependencies. All this is widely missing for modeling
languages, making model-based development much more
tedious. Eclipse in particular does not know the difference
between a generated and a handwritten Java class, and there-
fore, searching facilities do find a great number of code that
could otherwise be hidden. Refactoring does not apply to
source models but to the generated code, thus enforcing
the modelers to adapt their models manually. Even worse,
using the automatic refactoring support of current IDEs will
change the generated code without notifying the developer
who might not be aware of the necessary manual adaption of
the models. In this case, the next generator run will override
the refactoring, which leads to compile errors in the gener-
ated code. Integrated model/code management would allow

refactoring beyond language borders. The same would hold
for auto-completion that allows developers to include ele-
ments from the source models in other source models as well
as handwritten code and vice versa. This would also prevent
many errors coming from the missing generated code at the
beginning or after cleanup.

It would already help, if Eclipse knew the difference
between handwritten source and generated code. Currently,
when a generation run takes place, the developer manually
has to tell Eclipse that code has changed (Refresh). Eclipse
should also relax its warnings on generated code, as it is com-
mon to add potential imports, methods, or variables that are
not used in the code in certain configurations.

Agile development only became possible when the appro-
priate tooling based on modern languages became available.
Modeling tools still miss this agility for a variety of rea-
sons discussed above. Some of these problems come from
the man-made situation that IDEs currently assume a solely
code-based development process, not at all allowing the inte-
gration with modeling tools. This sometimes leads to the
invention of tooling workarounds, which in the long run only
creates more problems.

However, many of the above-mentioned problems only
seem to be pragmatic at first sight, but looking deeper into
them, most of them require a very deep and precise theo-
retical solution that needs to be conceptually developed by
researchers.

If you know solutions for some of these problems,
please send your paper explaining it to SoSyM or tell
us directly. If you experience similar or completely dif-
ferent problems, please also drop us a note (e.g., Bern-
hard.Rumpe@sosym.org).

123


	Why it is so hard to use models in software development: observations

