
Softw Syst Model (2013) 12:223–225
DOI 10.1007/s10270-013-0346-4

EDITORIAL

The evolution of modeling research challenges

Robert France · Bernhard Rumpe

Published online: 14 May 2013
© Springer-Verlag Berlin Heidelberg 2013

In 2007 ICSE hosted a track called “Future of Software
Development” (FOSD). We were invited to write and present
a paper on the future of modeling for the track. The result-
ing paper [1] described the state of modeling research, iden-
tified some major challenges and proposed a research road
map. Parts of this road map are currently being explored, and
progress has been made in addressing some of the challenges
we identified. However, there is still significant research “to
be done” with respect to the challenges outlined in that paper.
It is not our intent to discuss the progress the community has
made with respect to the road map in this editorial (our apolo-
gies for deflating expectations in this regard; an editorial is
simply not the place for such discussions). Rather, we would
like to use this editorial to stimulate discussions around some
of the challenges that have arisen since we wrote that paper.

Before we get into identifying specific challenges, let
us first take a step back and ask “What is the grand chal-
lenge addressed by researchers in the SoSyM community?”
The answer has typically been “To significantly reduce the
time, cost, and effort required to develop complex software-
intensive systems that meet stringent quality requirements
through use of models that are fit-for-purpose.” This is still
the focus of many research programs, but we are also see-
ing a broadening of the grand challenge to include not only
development problems, but problems that occur throughout
the lifetime of a complex system, from conception to retire-
ment. For example, in the FOSD paper we made reference
to emerging work on the use of models to manage software

R. France (B)
Colorado State University, Fort Collins, Colorado, USA
e-mail: france@cs.colostate.edu

B. Rumpe
RWTH Aachen University, Aachen, Germany
e-mail: Bernhard.Rumpe@sosym.org

at runtime (now referred to as models@run.time). The grand
challenge is thus evolving to encompass a wider range of
problems that occur in the life cycle of complex systems, as it
should. It is interesting to note that in other disciplines the use
of models to manage work on artifacts throughout their life
cycles is receiving significant attention. For example, in the
construction domain building information modeling (BIM),
techniques and standards are being developed to support the
management to built environments from conception, to archi-
tectural design, to onsite construction, to building occupancy
and finally to building demolition. In this case models are the
primary means for managing work throughout a building’s
lifetime.

Given this broader view of the role that models can play,
we have identified the following research opportunities and
challenges:

• Systems that integrate mechanical, software and electri-
cal engineering subsystems (e.g., cyber-physical systems
(CPS)) will become commonplace, and thus, there is a
need for work on how the modeling approaches used by
experts in these diverse domains can be integrated. This
is a very challenging problem, and thus, there is a need
for significant intellectual investment in developing inte-
grated modeling languages and associated tooling. With
respect to CPS, there are two core issues that require our
attention as researchers:

– Mechanical, electrical and software engineering rely
on entirely different theories (e.g., theories based on
continuous mathematics versus those based on event-
based automata), and thus engineers in these domains
use very different approaches. The challenge is to
develop good bridges across these theories.

123



224 R. France, B. Rumpe

– Proper integration of two very different development
processes is needed. The development processes
should be decoupled to the extent possible, for exam-
ple, if software is the dominating factor (and risk),
software development should not be made dependent
on the mechanical development process. Currently,
this is sometimes not possible because software
developers usually need the mechanical parts (phys-
ical or electrical) to exist before starting develop-
ment. What can help in this respect is a front-loading
process that disconnects software and mechanical
development through the use of models of the
mechanical systems to facilitate early simulations.

• Virtual construction and testing through simulation will
become increasingly important. Simulating the context
of a system or subsystem to understand its behavior is
particularly important (where the context may include, or
exclude, mechanical parts). This might require extensive
understanding of the context, which can be facilitated by
models.

• Tooling for advanced artifact management including
information and dependency tracing, variabilitymodeling,
advanced consistency checking and analysis will have to
improve, possibly by orders of magnitude, to better sup-
port effective use of models across a system’s lifetime.

• Models are more effective if they are properly integrated
into a system’s life cycle processes. In particular, system
development processes have a high degree of potential
innovation, and thus, these processes need to be adapt-
able to project, product and developer’s needs. At the
same time, they must also be controlled in a predictable
manner. Explicit modeling of the processes, as is done
for business processes, is needed if we want to tightly
integrate processes with models.

• Adaptive systems that require new levels of security and
safety are beginning to emerge. For example, dynamic
adaptation or updating is necessary because customiza-
tion by users demands not only system flexibility, but also
frequent security updates. Apps from smartphones and
software plugins are manifestations of this adaptability.
Even their versioning is independent of the underlying
technologies. Explicit use of models during runtime to
allow customer adaptation could prove to be beneficial.
Safety and security issues could call for modeling the
possible bandwidth of customization through appropri-
ate constraint specification languages that are inherently
underspecified.

• Cloud systems will soon be integrated with non-cloud-
based systems, e.g., for storage and handling of masses
of sensor data of various sources (car, home, body, fac-
tory, energy, city, state and governance), and will have an
impact on systems that connect to the Internet (“Internet

of things”). There is thus a need to investigate ways in
which cloud-based concerns can be addressed in models.

• Multicore may play increasingly important roles in
embedded systems, e.g., to provide redundancy on chips
(for safety reasons) and support reliable parallel com-
putations at least of parts of the software. Can modeling
help here, e.g., by explicitly orchestrating parallelization,
redundancy and security levels?

• “Correctness by construction” will become even more
feasible. A prominent example is the use of a determin-
istic, real-time bus for the implementation of commu-
nication, such that models that include time constraints
can faithfully be mapped to the implementation and by
construction communication scheduling fits the desired
needs. A second example is the use of an executable DSL
(or programming language) again with explicit time con-
straints combined with a restricted expressivity for loops
and recursion for both data structure and functionality.
This allows generators to predict worst-case computa-
tion times of the generated program and thus automated
checking of reliability of specified timing constraints.
Fortunately, these techniques help engineers tackle new
problems, e.g., by means of the above-mentioned multi-
core and CPS technologies. Combinations of frameworks
and hardware technology with models to customize them
will certainly be of help here. We expect more techniques
to solve problems by construction instead of postmortem
analysis to come in the increasingly critical security and
safety systems domain.

• Formal methods reloaded in lightweight forms provide
“just enough” analysis to meet development needs in
many situations. These techniques are typically model-
based, e.g., Sat-Solvers and Model Checking, and they
provide developers with feedback expressed in familiar
languages. We anticipate that further advanced forms of
automatic analysis and, in particular, constructive syn-
thesis will come. Some of them are the following:

– Automatic synthesis of complete models from views.
– Automatic mappings of logical models to a distrib-

uted hardware architecture according to functionality
needs and reliability.

– Automated correctness checking of certain kinds of
algorithms.

– Generation of proof obligations along with execu-
tion of refactorings (behavior-preserving transforma-
tions) on models and ideally automated proofs.

– Automated checking of consistency of a set of
selected model elements to a configuration in a soft-
ware product line.

– Automated checking of conformance of behavior of
a subclass/subcomponent implementation versus the
super-specification it replaces.

123



The evolution of modeling research challenges 225

– Proof that decomposition of a more complex func-
tionality into time-consuming subsystems in total still
serves the desired quality of service.

• The community still lacks tool infrastructures that enable
agile model-based development. These infrastructures
will allow us to use DSLs in more agile ways. However,
the challenging question is “Who is going to provide the
tooling for these DSLs?”

In summary, there are still significant challenges that we
need to address. We hope to see more submitted papers that
go beyond the traditional modeling boundaries.

Reference

1. France, R., Rumpe, B.: Model-driven development of complex soft-
ware: A research roadmap. In: Future of software engineering 2007
at ICSE, Minneapolis, pp. 37–54. IEEE (2007)

123


	The evolution of modeling research challenges
	Reference


