
Softw Syst Model (2011) 10:439–440
DOI 10.1007/s10270-011-0210-3

EDITORIAL

Variability in UML language and semantics

Bernhard Rumpe · Robert France

Published online: 28 August 2011
© Springer-Verlag 2011

Practitioners, who use UML as a sketching language are
generally not too concerned about the precision of their mod-
els, but developers who build UML models to rigorously
analyze software properties (e.g., to analyze the consistency
of design constraints) or that can be mechanically trans-
formed to implementations requiring tools and tool chains
that are based on a precisely defined UML semantics (see
this issue’s Expert Voice by Manfred Broy and María Victo-
ria Cengarle as well as the regular paper on the many seman-
tics of sequence diagrams by Zoltán Micskei and Hélène
Waeselynck). This need motivates much of the work on defin-
ing appropriate formal semantics for the UML.

There is a significantly large body of work on formalizing
the UML—both syntactical appearance, internal representa-
tion and semantics (in terms of meaning), and the collective
experience suggests that defining appropriate semantics for
the UML has both a technical and a strong political/social
aspect. This non-technical aspect is concerned primarily with
determining what constitutes an “appropriate” language. The
problem is that different stakeholders, including UML mod-
elers from different domains, tool vendors with specific ready
to use solutions, have varying views of what constitutes an
appropriate UML language and its semantics.

It is not easily possible to support these sometimes com-
peting views in a single language. This led to the view of
UML as a “family of languages” and to the introduction of
profile mechanisms and “semantic variation points” that can
be used for specializing the syntax and semantics of UML.

B. Rumpe (B)
RWTH Aachen, Aachen, Germany
e-mail: bernhard.rumpe@sosym.org

R. France (B)
Colorado State University, Fort Collins, CO, USA
e-mail: france@cs.colostate.edu

The UML currently has a wide variety of these semantic
variation points indicating points in the language definition
that can be tailored to better support the many forms of usage
of UML. Although this form of tailoring may be convenient
for developers, it makes the development of generic tools
and tool chains considerably more complex and makes it
almost impossible to provide a well formed, rather complete
and precise semantics for the UML as a whole. Furthermore,
the UML does currently not provide good mechanisms for
introducing and describing variations or selecting concrete
sub-variants yet.

Managing variability within a language, such as the UML
can be likened to manage variability of a software product
line. Indeed, it is useful to regard the UML as a product line
of languages to explore how techniques for managing vari-
ability in product lines (e.g., feature diagrams) can be used to
explicitly manage variability in UML. We recently invested
some efforts in studying this technique and our work suggests
that it can very well be used to make the UML, or at least
some derivatives of UML, more precise and easier to use.
It can also help developers understand similarities and dif-
ferences across different UML derivatives. One can envisage
configuring a UML tool using a configuration that describes
a particular UML derivative, the required tool functionality,
enhanced analysis algorithms or domain-specific restrictions,
the desired form of code and test generation, among other fea-
tures. One can also envisage that the UML standard defines its
semantic variation points explicitly using feature diagrams.

From its many possible forms of uses, it seems clear that
the UML will not have a single syntactic form or semantics
that adequately serves its community, but understanding and
managing variations in the language UML might allow us to
cope with this drawback.

The time to explore language variability to allow modelers
deal with precise and well-assisted language variations.

123



440 B. Rumpe, R. France

Contents in this issue

In this issue, we present one expert voice and six regular
papers.

The Expert Voice on “UML Formal Semantics: Lessons
Learned” where Manfred Broy and María Victoria Cengarle
discusses currently known problems with the UML. They
discuss problems related to formal semantics, problems with
integrating UML sublanguages, and they point out that the
UML standard is written from and for tool vendors and not
for users, among other things.

Shahar Maoz and David Harel in their regular paper “On
tracing reactive systems” present a technique for analyzing,
visualizing, and exploring the execution traces of reactive
systems. This paper describes how the rigorous UML2-
dialect, Live Sequence Charts (LSC), can be used by devel-
opers to think and model in terms scenarios, and to produce
quality code in a more efficient way.

The regular paper “Rigorous identification and encod-
ing of trace-links in model-driven engineering” by Richard
Paige, Nikolaos Drivalos, Dimitrios Kolovos, Kiran Fernan-
des, Christopher Power, Goran Olsen, and Steffen Zschaler
discusses the complexity of tracing links in model driven
engineering. The problem addressed in this paper is signifi-
cant, given that the use of modeling techniques in a project
can lead to the development of many model artifacts related
in a variety of ways that need to be managed.

Zoltán Micskei and Hélène Waeselynck present a sur-
vey of sequence diagram semantics in their paper “The
many meanings of UML 2 Sequence Diagrams: a survey”.

As mentioned in our editorial, a variety of semantics can be
associated with UML elements. This paper is a good attempt
at comparing a variety of semantics for sequence diagrams.

Although many of our papers mainly deal with languages
and semantics, we also like to receive good papers that
describe how modeling can be effectively applied to prob-
lems in other domains. In their regular paper “An executable
object-oriented semantics and its application to firewall ver-
ification” the authors Kenro Yatake and Takuya Katayama
target ML for simulation and the HOL theorem prover for
verification of their semantics.

Martin Monperrus, Jean-Marc Jézéquel, Benoit Baudry,
Joël Champeau, and Brigitte Hoeltzener in their regular paper
“Model-driven generative development of measurement soft-
ware” tackle the problem of efficiently measuring software
that is developed using domain-specific languages. They
present a model-driven approach to measure such models
with respect to standard quality metrics.

The last regular paper “Model-based qualitative risk
assessment for availability of IT infrastructures”, Emmanuele
Zambon, Sandro Etalle, Roel J. Wieringa and Pieter Hartel
presents a model-based approach to risk assessment for IT
infrastructures. The authors discuss, why classic risk assess-
ment processes do not fit to IT and propose an improved
process.

We hope you enjoy reading this issue.

Robert France, Bernhard Rumpe
Editors in Chief

123


	Variability in UML language and semantics
	Contents in this issue


