Softw Syst Model (2004) 3: 179-180 / Digital Object Identifier (DOI) 10.1007/s10270-004-0068-8

Editorial

Assessing model quality

Robert France, Bernhard Rumpe

Published online: 13 August 2004 — © Springer-Verlag 2004

Students in software engineering courses that cover mod-
eling often ask some variant of the following question:
“How do I know that my model is a good model?”. It is
not easy to provide a satisfactory response to this ques-
tion. Good instructors provide students with some cri-
teria and guidelines in the form of patterns (e.g., Craig
Larman’s GRASP patterns), rules of thumb (e.g., “min-
imize coupling, maximize cohesion”, “keep inheritance
depth shallow”), and exemplar models to better under-
stand good modeling practices. While these help, the real-
ity is that students ultimately rely on feedback from their
instructors to determine the quality of their models. The
instructors play the role of expert modelers and the stu-
dents are their apprentices. The state of the practice in
assessing model quality in the classroom and in industry
seems to indicate that modeling is still in the craftsman-
ship phase.

Research on rigorous assessment of model quality has
given us a glimpse of how we can progress to the next
phase in which models are engineered. A number of re-
searchers are working on developing rigorous static an-
alysis techniques that are based on well-defined models
of behavior. Articles on model-checking of modeled be-
havior published in SoSyM are a good reflection of the
work in this area. Another promising area of research is
systematic model testing (i.e., systematic dynamic analy-
sis of modeled behavior). Systematic dynamic analysis of
code (i.e., code testing) involves executing programs on
a selected set of test inputs that satisfy some test crite-
ria. These ideas can be extended to the modeling phases
when models with operational semantics are used. Most
educators in the modeling community have heard stu-
dents gripe about their inability to animate or execute the
models they have created in order to explore the behav-
ior they have modeled. Model testing is concerned with
providing modelers with this ability. Systematic model
testing techniques provide opportunities for automating

the testing process and for reusing tests. Systematic re-
gression testing techniques in particular can enable more
rigorous model evolution. The notion of model testing is
not new. For example, SDL (Specification and Descrip-
tion Language) tools of provide facilities for exercising the
state-machine based SDL models using an input set of
test events. Work on executable variants of the UML also
aims to provide modelers with feedback on the adequacy
of their models. More recently a small, but growing, num-
ber of researchers have begun looking at developing sys-
tematic model testing techniques. This is an important
area of research and helps pave the way towards more ef-
fective use of models during software development. There
are a number of lessons from the systematic code testing
community that can be applied, but the peculiarities of
modeling languages also requires the development of new
and innovative approaches. In particular, innovative work
on defining effective test criteria that are based on cov-
erage of model elements and on the generation of model-
level test cases that provide desired levels of coverage is
needed.

It is also useful to look at how other engineering dis-
ciplines determine the quality of their models. Engineers
in other disciplines typically explore answers to the fol-
lowing questions when determining the adequacy of their
models: Is the model a good predictor of how the physical
artifact will behave? What are the (simplifying) assump-
tions underlying the model and what impact will they
have on actual behavior? The answer to the first question
is often based on evidence gathered from past applica-
tions of the model. Evidence of model fidelity is built up
by comparing the actual behavior of systems built using
the models with the behavior predicted by the models.
Each time engineers build a system the experience gained
either reinforces their confidence in the predictive power
of the models used or the experience is used to improve
the predictive power of models. Answers to the second



180 Robert France, Bernhard Rumpe: Assessing model quality

question allow engineers to identify the limitations of ana-
lyses carried out using the models and develop plans for
identifying and addressing problems that arise when the
assumptions are violated. Are similar questions applica-
ble to software models? There are important differences
between physical and software artifacts that one needs to
consider when applying practices in other engineering dis-
ciplines to software, but there probably also exists some
experience that can be beneficially applied to software
modeling.

We can be sure that static analysis through context
condition checking in various forms and dynamic check-
ing through different kinds of testing strategies will be
important parts of the newly emerging model engineering
discipline.

Papers in this issue

The first two papers “Dynamic Meta Modeling with
time: Specifying the semantics of multimedia se-
quence diagrams” by the authors Jan Hendrik Haus-
mann, Reiko Heckel, and Stefan Sauer and “Meta-
modelling and graph grammars for multi-para-
digm modelling in AToM?3” by the authors Juan de
Lara, Hans Vangheluwe, and Manuel Alfonseca are the
second part of the Special section on graph transform-
ations and visual modeling techniques. This special sec-
tion was organized by guest editors Paolo Bottoni and
Mark Minas and is explained in the corresponding Edito-
rial of the last SoSyM Issue 2004/2.

In our series of expert voice papers, we this time are
pleased to present a paper “Use cases — Yesterday,

today, and tomorrow” by Ivar Jacobson, where he re-
flects on Use Case Diagrams originally invented by him in
the early nineties. Since then Use Cases have become a vi-
tal part of the Unified Modeling Language and have been
used in many projects to capture an overall view on the
stakeholders and the pieces of functionality (“use cases”)
the system provides.

In his regular paper “Plug-and-play composi-
tion of features and feature interactions with
statechart diagrams“ the author Christian Prehofer
presents an approach to separate highly entangled state-
based systems into separate features, where individual
features are described using Statecharts. He also pro-
vides a composition form based on graphical refine-
ment relations between statecharts to allow constructing
larger systems from smaller parts, as e.g. common in the
telecommunication industry.

Tracking requirements down to their implementa-
tion is particularly important when evolving systems
through changing requirements. Although this usually is
the case in our long living software system, this tracking
is also particularly difficult. In the paper “Reconciling
software requirements and architectures with in-
termediate models” the authors Paul Grinbacher,
Alexander Egyed, and Nenad Medvidovic provide such
a tracking technique by using intermediate models that
ease to track und understand the relationships between
both worlds.

We hope you enjoy reading the articles in this issue,

Robert France, Bernhard Rumpe
Editors in Chief



