
Softw Syst Model (2004) 3: 1–3 / Digital Object Identifier (DOI) 10.1007/s10270-004-0052-3

Editorial

In search of effective design abstractions

Robert France, Bernhard Rumpe

Published online: 24 February 2004 – Springer-Verlag 2004

The perceived popularity of the modeling languages such
as the UML may lead some to believe that there is
wide-spread appreciation of the value of modeling in the
software development industry. Informal polls in North
American trade journals seem to indicate otherwise. Use
of the UML seems to be limited to the use of use cases
for requirements and class diagrams for graphically rep-
resenting programs. The polls also seem to indicate that
awareness of the Object Management Group’s Model
Driven Architecture (MDA) is not widespread. As MDA
is currently the most widespread model-based develop-
ment approach this strongly indicates that much needs
to be done to convince practicing developers of the value
of model-driven development approaches in general. But,
we expect to see in 2004 a surge in modeling tools in par-
ticular those that claim to be “MDA-Compliant”. Tool
support is essential to realizing the vision of model-driven
development, but use of tools without a solid under-
standing of the principles and methods they support can
lead to failed projects and faulty perceptions of model-
driven development. In this editorial we reflect on the
value of the abstraction principle in software develop-
ment and on how modeling approaches can support this
principle.
The increasing complexity of evolving large software

systems has generated a renewed interest in software
modeling techniques. Inherent software complexity can
arise from a number of sources, for example, the need to
support diverse and complex data and computational re-
sources, and diverse users with competing needs. Rapidly
evolving software infrastructure can also contribute to
the complexity of creating and evolving software systems.
For example, IT departments are faced with the task of
evolving large integrated systems to take advantage of
new middleware, communication or other platform tech-
nologies in order to maintain or gain competitive ad-

vantage. The rapid rate of change in these technologies
is a source of considerable concern: the complexity of
the software makes changing the software an error-prone
and arduous task that takes considerable time. Managing
software complexity can be characterized as a search for
the “right” abstractions. Developers are seeking good ab-
stractions that can help reduce the time and effort needed
to create and evolve dependable systems.
Past research on design abstractions has produced

structuring techniques that are based on functional ab-
stractions (e.g., Structured Design), data abstractions
that encapsulate behavior and state of a conceptual en-
tity (Object-Oriented development), and service-based
abstractions in which data and functional elements per-
taining to a set of provided services are encapsulated
in units called components (Component-Based develop-
ment). There are numerous publications that describe
how these abstractions can be used to manage complex-
ity, and there is some quantitative context-specific ev-
idence of their effectiveness. Today, the rate of change
in software platform and system integration technologies
(e.g., middleware technology) is spawning a new gener-
ation of complex software. For example, the pervasive
and open nature of the internet present developers of
internet-based software with challenges that are signifi-
cantly different from those faced by developers of soft-
ware built for a machine on a restricted network. Design-
ers of these new systems have to deal with a myriad of
complex interdependent dependability concerns (e.g., se-
curity, availability, error recovery, service integrity). Re-
search on model-driven and aspect-oriented development
can provide the abstraction mechanisms needed to man-
age the complexity of this new breed of software. An un-
derlying theme in the discussion is the need for design
techniques that allow developers to define abstractions in
many dimensions.

2 Robert France, Bernhard Rumpe: In search of effective design abstractions

As one of the large and innovative industrial con-
sortia the Object Management Group (OMG) has re-
sponded to the growing complexity of software with an
industry-driven initiative called Model Driven Architec-
ture (MDA). MDA technologies are intended to raise
the level of abstraction at which developers conceive and
implement software. In MDA, software models are the
primary artifacts of software development. The key char-
acteristic of an MDA approach is the use of abstractions
to separate technology-specific concepts from technology-
independent concepts. Technology-independent models
are composed with technology-specific models (e.g.,
models that describe middleware and other infrastruc-
tural elements) to obtain a design model that can be
transformed to code. Ideally, changing an application
to exploit new technology would require composing
the technology-independent model with a new set of
technology-specificmodels, and the composition and sub-
sequent transformation to deployable code would be ac-
complished in a cost-effective and timely manner. This
is an appealing view of software development, but ac-
complishing the ideal requires significant advances in
modeling theory. Furthermore, a sound and elaborated
modeling theory would allow us to transform, compose
and refine models in a much more general way than cur-
rent MDA proposes.
Effective abstraction mechanisms are critical to the

success of model-driven development. Some of the more
widely used modeling techniques allow developers to
separate concerns to manage software complexity. The
choice of abstractions influences the design structure and
can make it easier or more difficult to evolve a system.
A decision to structure a design with respect to a set
of design concepts can make it necessary to spread in-
formation pertaining to set of equally important design
concepts across design units. The problem is that under-
standing and evolving the latter set of concepts is difficult
because they are scattered and tangled across the design
model. Recent work on Aspect-Oriented Programming
(AOP) addresses this problem at the programming level.
One also needs to support multi-dimensional separation
of concerns at other stages of development. Work in this
area has given rise to a field of research labeled Aspect-
Oriented Modeling (AOM). In an AOM approach, a pri-
mary model reflects decisions used to determine the core
architecture of a design, and aspects are localized de-
scriptions of design concepts that cannot be encapsulated
in the primary design structure. Composing a primary
model with aspects results in a comprehensive design
model. Examples of design concepts that can be usefully
described by aspects are design elements that address
pervasive security and fault tolerance concerns. Aspects
can also describe technology-specific design concepts, and
thus AOM can be used as a vehicle for approximating
the MDA vision. Treating aspects as patterns (e.g., secu-
rity and middleware design patterns) facilitates reuse of
aspects.

AOM can also provide support for balancing com-
peting design objectives. Security, fault tolerance and
other dependability and functional objectives often com-
pete with each other in the sense that meeting an ob-
jective negatively impacts the degree that another can
be satisfied. In such situations, developers should con-
sider alternative ways of meeting objectives and make
trade-offs in order to balance competing objectives. Ob-
taining a design that “balances” the concerns can be chal-
lenging using existing design techniques. With an AOM
approach, the competing design concepts can be mod-
eled as aspects to allow developers to plug in and unplug
alternatives.
In 2004 we expect to see growing interest in the in-

tegration of aspect-oriented, pattern-based, and model-
driven development techniques. The results should pro-
vide a good foundation for methods and tools that ef-
fectively support model-driven development of complex
software systems.

Papers in this issue

We are pleased that Cris Cobryn found the time in his
very busy schedule to publish an Expert Voice paper.
The paper, “UML 3.0 and the future of modeling”,
relates the history of the UML definition with the fu-
ture standardization efforts, and some open challenges for
model-driven development.
In their regular paper “OCL 1.4/5 vs 2.0 Expres-

sions: Formal semantics and expressiveness” the
authors Maŕıa Victoria Cengarle and Alexander Knapp
present a type system, an operational and a denotational
semantics for the expression sublanguage of the Object
Constraint Language. Their results demonstrate that the
changes introduced in OCL 2.0 restrict its expressivity to
primitive recursion while OCL 1.4/5 was computation-
ally complete. This foundational result shows how im-
portant it is to carefully design a modeling language to
avoid expressivity problems that strongly impact practi-
cal applicability.
The authors Carlos Rossi, Manuel Enciso, and In-

maculada P. de Guzmán in their paper “Formalization
of UML state machines using temporal logic” use
a variant of temporal logic that allows the definition of
time points, intervals, and dates. They demonstrate how
to map the most important features of Statecharts into
the temporal logic variant.
An innovative extension to visual notations is pre-

sented in the regular paper “Nesting in Euler Dia-
grams: syntax, semantics and construction” pre-
sented by Jean Flower, John Howse, and John Taylor .
Nesting of diagrams is supported in two popular diagram
types: Venn diagrams in set theory and Statecharts. In
this article the authors provide a general foundation to
nesting of diagrams and their interpretation in the con-
text of visual modeling.

Robert France, Bernhard Rumpe: In search of effective design abstractions 3

In the final regular paper of this issue “The Os-
MoSys approach to multi-formalism modeling of
systems” the authors Valeria Vittorini, Mauro Iacono,
Nicola Mazzocca, and Giuliana Franceschinis introduce
an approach to building models that rely on several for-
malisms. They relate those models at a syntactic level

using meta-modeling techniques and thus gain interoper-
ability between different notations.
We hope you enjoy reading these articles,

Robert France, Bernhard Rumpe
Editors in Chief

