
Softw Syst Model (2003) 2: 73–75 / Digital Object Identifier (DOI) 10.1007/s10270-003-0025-y

Editorial

Model engineering

Published online: 2 July 2003 – Springer-Verlag 2003

Welcome to the second issue of the Software and System
Modeling (SoSyM) journal in 2003.
The heightened awareness of the benefits that can be

derived from model-driven software and system develop-
ment approaches is evident in discussions that take place
in academic conferences, workshops, and industry meet-
ings. On the other hand, there is a significant number
of developers and researchers who question the feasibil-
ity and benefits of model-driven approaches. Advocates
of modeling approaches, for sure, can recount the discus-
sions, debates, and outright arguments, they have had
with their “code-centric” colleagues. These colleagues
recall the dismal failure of CASE tools that promised
orders-of-magnitude improvement in productivity and
product quality, and the difficulty of maintaining con-
sistency between models and code. The more sophisti-
cated protagonists question the feasibility of developing
general-purpose modeling languages and techniques that
can provide useful abstractions and mechanisms for most
application domains. Two recent events highlight the gap
between the two camps. A guest speaker at a recent
workshop on Program Comprehension noted that in the
COBOL-dominated financial sector “Graphs and UML
diagrams may be full of meaning, but unless their mean-
ing can be presented in source terms (i.e., in COBOL
terms), they will not be understood by the financial pro-
gramming community.” (editors’ comments in italics) –
Comprehending Reality – Practical Barriers to Indus-
trial Adoption of Software Maintenance Automation, by
James Cordy. We also came across a review (on Ama-
zon.com) of an introductory book on Java that included
the following complaint: “However, it extensively uses
UML, and I think it’s a safe assumption that most peo-
ple who don’t know Java, also don’t know UML. Look-
ing at UML diagrams can prove to be extremely frus-
trating for a beginner”. Rather than throw our hand

up in despair, or scoff at the limited scope of the code-
centric view, we should use arguments against the use
of models in software development as fuel for driving re-
search on model-driven approaches and development of
supporting tools. In this editorial we will sketch our view
on some of the research directions that may be worth
pursuing.
Model-based software description techniques use

models, expressed in a formal language, to describe the
architecture of a system, and the behavior of software
artifacts. Models expressed in such a language can also
be used to (1) clarify the structure of an enterprise (2)
describe business workflows, (3) describe development
processes and (4) describe the users of software sys-
tems in terms of their needs and motivations. These
descriptions can be used as communication artifacts, as
points of references against which subsequent implemen-
tations are verified, or as the basis for further develop-
ment (e.g., through the use of refinement and realization
techniques).
In his work published in the seventies, Stachowiak

characterized a “model” as follows:

(1) A model has a purpose.
(2) A model describes some entity that exists or is in-
tended to exist in the future.

(3) Amodel is an abstraction, that is, it does not describe
details of the entity that are not of interest to the au-
dience of the model.

When building a model it is important to consider its
purpose. Models can be created to help clarify require-
ments and designs of complex systems, to support an-
alysis activities, to document systems at various levels of
abstraction, and to support decision-making. In a model-
driven software development approach, models can also
be used to describe how descriptions of software are trans-

74

formed during development. It is conceivable that a var-
iety of models can be used during different stages of
the development process; in general, it would be diffi-
cult to develop a model that can be used for all mod-
eling purposes during a development project. To enable
software and system developers to use models that best
suit their development needs (model purposes), a pow-
erful mechanism for translating between different kinds
of models is critical to the successful use of models in
practice.
Techniques that describe transformations on soft-

ware and system artifacts are receiving much attention
currently. Transformation models that can be stored,
specialized, and reused pave the way for the devel-
opment of techniques and tools that support system-
atic and controlled evolution of software and system
artifacts. Successful transformation languages can be
found in the areas of logic systems, for example, as
found in theorem-provers, graph systems in the form
of graph transformations, and the database are in the
form of schema evolution techniques. Examining the
transformation languages in these areas is an ongo-
ing research activity and promises to yield insights
that can lead to better approaches to modeling trans-
formations to support evolution of software artifacts.
Explicit and possibly standardized model transform-
ation languages will also be key to the development
of techniques and methods that support the separa-
tion of technology dependent concerns from technol-
ogy independent concerns during development. This
in turn can lead to stable investments in models and
transformations.
Use of model-driven development techniques will re-

quire adaptation of current software project practices and
processes. The use of tools supporting the creation of
models and their transformation to efficient executable
forms can have a downsizing effect on projects. Using
models to generate test cases paves the way for the devel-
opment of systematic testing processes that utilize soft-
ware descriptions developed throughout the development
phases.
To better support the use of models during devel-

opment it will become necessary to further understand
models in terms of how they can be transformed and ana-
lyzed, as well as understand the impact of software size
and complexity on model creation, management and evo-
lution. We expect that “model engineering” will become
a new and highly interesting sub-discipline in the software
engineering discipline.
To summarize:

• Use of models built for specific purposes will be-
come increasingly important for successful develop-
ment projects.
• Explicit model transformation languages are key to
reuse of transformation knowledge and independence
of tools and technology.

• Model Engineering might be considered a new sub-
discipline to Software Engineering

Summary of papers for this issue

This issue contains four regular papers and an Expert’s
Voice paper. The Expert’s Voice paper from James J.
Odell, H. Van Dyke Parunak and Mitchell Fleischer:
Modeling Agent Organizations using Roles deals
with the question, how to model large-scale software
systems that cross company and may be even social or
country boundaries. Based on the notions of agents and
roles, they describe how roles interact and how roles can
be designed. They identify the collaboration of agents
playing specific roles in groups like societies or organiza-
tions as the next frontier.
The first regular paper from David Harel and Rami

Marelly: Specifying and Executing Behavioral Re-
quirements: The Play-In/Play-Out Approach de-
scribes a promising new approach to requirements elicita-
tion. The method described in the paper is backed by an
implementation that allows to iteratively construct com-
plete behaviors from example scenarios that the user is
“playing-in”. As a result a complete system description is
“played-out”. This paper is also a successful example of
how new theoretic approaches enhance practical software
development.
A second regular paper from Marc Frappier and

Richard St-Denis is called EB3: an Entity-Based
Black-Box Specification Method for Information
Systems. In this paper the authors combine the black-
box specification method of Cleanroom with the Jackson
System Development (JSD) method and the require-
ments class diagram used in object-oriented analysis.
They provide a process algebra and a formal semantics
based on input-output relations.
The third regular paper from Florida Estrella, Zsolt

Kovacs, Jean-Marie Le Goff, Richard McClatchey, Tony
Solomonides and Norbert Toth is called Pattern Reifi-
cation as the Basis for Description-Driven Sys-
tems. The article discusses a pattern-based, object-
oriented, description-driven system architecture that is
based on pattern and driven by object-oriented models.
For that purpose they define an extension to the standard
UML four-layer meta-model.
The fourth and final regular paper of this issue from

Paris Avgeriou, Symeon Retalis and Nikolaos Papaspy-
rou: Modeling Learning Technology Systems as
Business Systems demonstrates a n approach to ap-
ply an development approach for business systems to the
related domain of web-based learning systems. This ap-
proach is also a report about development of a reference
architecture for learningmanagement systems that will in
the future lead to more effective development of this kind
of systems and thus might allow to develop tutoring sys-
tems as well as advanced deployment technologies in the
future.

75

Further information about SoSyM

A low-traffic mailing group for SoSyM announcements
has been created on the internet. Anyone can subscribe,
but only the SoSyM Editors are allowed to post to the
group (four times a year). If you are interested in receiv-
ing SoSyM-related news every issue you may subscribe
through our website.

http://www.sosym.org/

For further details and updated information on the
submission and review process please also see our website.

Sincerely,

Robert France, Bernhard Rumpe
Sosym Editors-In-Chief

