Software and Systems Modeling (2025) 24:1621-1622
https://doi.org/10.1007/s10270-025-01339-5

EDITORIAL

q

Check for
updates

Pragmatic specification of software behavior, configuration,
and orchestration: the precision and usability of domain-specific

modeling

Marsha Chechik' - Benoit Combemale? - Jeff Gray> - Bernhard Rumpe*

Published online: 7 November 2025
© The Author(s) 2025

Inrecent discussions, a recurring theme has been the evolving
role of specification languages in industrial practice. While
formal methods and modeling languages have long aspired
to provide unified frameworks for reasoning about software
systems, contemporary usage patterns—particularly in large-
scale industrial settings such as big tech companies—paint a
different picture.

In several big tech companies, and potentially in other
software-intensive businesses, specification exists almost
entirely in the service of verification. If a specification does
not directly enable the formal verification of an artifact of
practical importance—such as code, APIs, configurations,
protocols, or policies—it is deemed irrelevant. This perspec-
tive frames specification not as an abstraction layer or design
blueprint, but as a tightly coupled tool for reasoning about
concrete, existing system artifacts.

The implications are far-reaching. First, languages are
chosen not for their generality or unification power, but
rather for their precision and fitness for a specific verifica-
tion task. They specify specific artifacts, e.g., configuration
or orchestration of specific tasks. Task plans are then inte-
grated using sophisticated and consistency-verifying tools.
Often, this means designing small domain-specific languages
(DSLs) that restrict certain forms of expressiveness, but in

B Bernhard Rumpe
bernhard.rumpe @sosym.org

Marsha Chechik
marsha.chechik @sosym.org

Benoit Combemale
benoit.combemale @sosym.org

Jeff Gray

jeff.gray @sosym.org

University of Toronto, Toronto, ON, Canada
University of Rennes, Rennes, France

3 University of Alabama, Tuscaloosa, AL, USA
4 RWTH Aachen University, Aachen, Germany

turn allow developers to employ SMT solvers or other rea-
soning tools as core reasoning engines. Therefore, the DSL
merely serves as syntactic sugar. This tightly scoped and tool-
driven approach diverges sharply from traditional ambitions
of modeling languages like the UML.

In contrast, the UML was envisioned as a unifying
paradigm—bringing together a variety of notations (e.g.,
class diagrams, sequence diagrams, state machines) under
a shared semantic umbrella, which allows for modeling
structure, behavior, interactions, and more under a common
framework. This unification was one of UML’s significant
achievements: enabling (ideally, semantically consistent) co-
expression of different views of a system. Yet, in practice,
UML’s lack of high-quality verification tools and the inher-
ent complexity of supporting semantic variations across its
sublanguages have limited its practical uptake in domains
where correctness is paramount. The lack of high-quality
verification tools is due to theoretical barriers (such as
undecidability) and practical barriers (such as language com-
plexity or usage variability), and it has not been seriously
tackled by the community so far.

This raises a sobering question: Did the pursuit of uni-
versal modeling dilute the focus on semantic precision
and tool support? In many safety—critical domains (e.g.,
avionics, automotive), UML has been eclipsed by specialized
tools or executable, programming language-like tools (e.g.,
SCADE/Lustre, Simulink, or Spectra)—each optimized for
narrow slices of the system development process, and each
equipped with robust verification pipelines.

Still, we must acknowledge UML’s enduring legacy: it
showed that different modeling paradigms can, in princi-
ple, coexist under a shared semantic structure. This vision
remains crucial—even if not fully realized—because the cur-
rent “zoo of languages” in practical use leads to a new kind of
fragmentation. As different teams or domains adopt their own
fit-for-purpose languages, the question of cross-language
reasoning and translation becomes both more important
and more difficult. Obviously, a manual translation is far

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-025-01339-5&domain=pdf

1622

M. Chechik et al.

too error-prone and, in evolutionary repetitions, also costly
and tedious. The UML attempted to develop an integrated,
translation-free approach, but so far has not been successful.

So what can we take from UML’s journey? Perhaps the
lesson is not that unification was a mistake, but that unifi-
cation without ool support for verification lacked staying
power. The human effort required to define semantic map-
pings between languages remains immense. No solver will
do it for us. But the need for such mappings (or the return of
an integrated approach) is growing—especially if we want
specifications written in one language to be reused, verified,
or composed with others.

Moving forward, we see the current twofold challenge for
the modeling community:

1. To embrace the diversity of domain-specific spec-
ifications and build bridges—semantically and tool-
wise—between them.

2. To ensure that specifications remain actionable, mean-
ing verifiable, analyzable, and directly connected to the
artifacts that practitioners care about.

This is not a retreat from the ambitions of modeling, but
rather a solid next step in its evolution. The work done by
the UML community in defining cross-language semantics
is an integrating foundation we should build on and adap-
t—bringing those lessons into new contexts where reasoning
and other verification tools are now taking center stage. This
is especially relevant as new and “automated” junior devel-
opers, such as LLMs, will give us additional assistance in
creating domain- and purpose-specific models.

@ Springer

As we look ahead, the future of specification may lie not in
seeking a single universal language, but in enabling many
languages to speak to each other—with operationally shared
semantics.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.


http://creativecomm\penalty -\@M ons.org/licenses/by/4.0/

	Pragmatic specification of software behavior, configuration, and orchestration: the precision and usability of domain-specific modeling



