
Software and Systems Modeling (2025) 24:975–976
https://doi.org/10.1007/s10270-025-01301-5

EDITORIAL

On theory andmanagement of dependencies betweenmodels

Marsha Chechik1 · Benoit Combemale2 · Jeff Gray3 · Bernhard Rumpe4

Published online: 20 June 2025
© The Author(s) 2025

Software developers often need to manage dependencies.
Unfortunately, software dependencies manifest themselves
in various forms, and discussions about dependencies can
be challenging due to the very different definitions and
relationships that developers may have in mind. To reduce
misunderstandings, it may be helpful to categorize the vari-
ous forms of dependencies.

A dependency is a relationship between two (or more)
different things. Let us exclude relationships with more
than two participants and concentrate on binary relations to
simplify considerations. During a typical development pro-
cess, dependencies may emerge across all forms of artifacts,
including requirement statements, explicit models, source
code, and (readily compiled and deployable) system ele-
ments. To be precise, we distinguish development artifacts
(which include, e.g., UML/SysML models and source code)
and the system elements. For example, an object-oriented
system consists of implemented classes and their (logical)
aggregations in the form of subsystems and components.
System elements are to be distinguished from models and
source code, which aggregate into packages, directories,
branches, or even (version-controlled) projects. Both sides,
i.e., the system and the artifacts describing it, are not entirely
independent of each other. Java, in particular, has done a
tremendous job reliably connecting classes and their source
files in an almost one-to-one relation. Colloquially, we thus
do not need to distinguish between a class and its describ-
ing source file anymore. However, in this article we mention
these two sides because the term “dependency” is used
within both sides. Projects depend on each other; compo-
nents dependon eachother; andmodels dependon eachother.

B Bernhard Rumpe
bernhard.rumpe@sosym.org

1 University of Toronto, Toronto, ON, Canada

2 University of Rennes, Rennes, France

3 University of Alabama, Tuscaloosa, AL, USA

4 RWTH Aachen University, Aachen, Germany

Let us simplify considerations by concentrating on develop-
ment artifacts while not considering system elements and
their dependencies here.

A dependency is typically asymmetric, i.e., “A depends on
B” does not imply the inverse. Circular dependencies cannot
happen for certain forms of dependencies, e.g., when an arti-
fact A is generated using an artifact B. Lack of circularity
creates a dependency hierarchy (a tree or a DAG). Due to the
very different forms of dependencies, we should also not mix
those up: “A depends on B” and “B depends on C” do not
necessarily imply any relationship between A and C. “De-
pendency” in general is therefore not transitive (while certain
forms of dependencies usually are).

To further understand the possible forms of dependencies,
it is helpful to look at a project using a typical programming
language (e.g., Java), where some parts are generated from a
high-levelmodeling language (e.g.,UMLStatecharts). In this
scenario, development artifacts are Java source files at one
level and Statechart models at another. After long and exten-
sive discussions and examinations of projects, it is clear that
we need only to distinguish between two main different and
very general kinds of artifact dependencies: (a) “is derived
from” and (b) “uses.”

Typically, “B is derived from A” means that there is a
manual activity or an automatic generator that takes all the
information from artifact “B” and produces artifact “A.” For
example, a Java class “MyStatechart.java” is generated from
“MyStatechart.model.” Other examples: “C.class” is gen-
erated from “C.java” or “System.jar” is an aggregation of
“C.class” files. Typically, a source “A” is no longer used in the
ongoing process (unless modified and used for regeneration)
because “B” encodes the information from “A,” potentially
in a different form. When ignoring reverse and roundtrip
activities and all their peculiarities, we can see that such a
dependency relationship is acyclic.

The second main form of relationship, “uses,” is of a very
different nature. In such a relationship, an artifact, for exam-
ple, a Java class “A.java,” imports “B.java” to use certain
elements that have been defined in B or in its superclasses.
“A.java” does not contain information encoded in “B.java,”

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-025-01301-5&domain=pdf


976 M. Chechik et al.

but relies on its elements, i.e., methods, types, constants, or
externally visible attributes. In Java, such a dependency can
be found through an “import” statement (or using a fully
qualified name). Of course, this form of a relationship may
be cyclic (even though that may from an engineering point
of view result in a suboptimal design).

If more precision is desired, the encapsulated details of
an artifact may be analyzed to differentiate between various
kinds of uses (e.g., a method call, an attribute read or write
access, a use of the imported type as an attribute type, as a
method parameter type or as a local variable type, an object
instantiation, or use of a constant). A well-defined Statechart
model needs similar import facilities to describe the inter-
nal state, possible incoming messages, preconditions, and
transition effects. Thus, Statechart models also have “uses”
relationships with other artifacts. This includes further forms
of “uses” between various models, for example, because a
Statechart may embed another Statechart as a sub-state or
interact via parallel composition.

A large modeling language, such as SysML, and in par-
ticular, SysML v2 (which is under final approvement in
2025), needs to provide quite a number of different relations
between modeling elements, such as usage, composition,
reference, specialization, subset definition, or general redef-
inition. Many of those can be applied to different kinds
of modeling elements. When all of those relationships are
aggregated between different models, the result is a large
variety of “use” dependencies between the models. We are
currently not aware of any work that has precisely addressed
all of these different dependencies, neither for UML, nor for
SysML, in full detail.

However, in some forms of languages/projects other forms
of relationships are denoted as dependencies, such as “copy
of,” whichmight be used to describe that two identical copies
of the same file are stored redundantly in different places (for
whatever reason), or “tested by.”Dependencies like “satisfied
by” and “refined by” typically connect models and require-
ments and share characteristics with “derived by,” but have
different methodological impact.

Maybe it is time for the modeling community to have a
deeper look at the dependencies or, more generally, relation-
ships between models, potentially coming up with a “theory
of dependencies,” which finally might lead to more effi-
cient and better-understood management of dependencies in
supporting development tools, visualizing current dependen-
cies, highlighting evolutionary changes in the dependency
graph, ormonitoring these dependencies according to a given
“artifact aggregation structure” to prevent forbidden relation-
ships.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	On theory and management of dependencies between models



