Synthesis and Exploration of Multi-Level, Multi-Perspective Architectures of Automotive Embedded Systems

Jordan Ross, Alexandr Murashkin, Jia Hui Liang, Michał Antkiewicz, Krzysztof Czarnecki

September 20th, 2017

Background & Motivation

Our Reference Model for Early Design

Multi-Perspective

Capturing Variability

Emily's Power Window Example

Capturing Latency

- Form timing chains using functions and function connectors
- Assign latencies to functional devices and analysis functions
- Assign message sizes to function connectors
- Deployed to smart node affects function latency
- Deployed to hardware connector affects function connector latency
- Assign speed factors to smart nodes
- Different communication connectors have different transfer rates.

Capturing Mass, Parts Cost, and Warranty Parts Cost

Some Example Design Exploration Scenarios

- 1. Emily would like to investigate the possibility of adding a dedicated ECU to each door (we call the door module). Precisely, she would like to find out if it is a cost effective solution while meeting the requirements for mass and latency.
- 2. Emily is tasked with designing the power window for a higher end car in which cost is irrelevant but mass should be **minimized**, she would like to explore the possible designs. Additionally, since it's a high end car, all features should be included. Lastly, the end-to-end latency for pinch detection to react and reverse the motor should be less than 200 ms.
- 3. Emily would like to **minimize** the cost, regardless of the features to support an "economy class" vehicle her company is rolling out. Is there an optimal car design that does include all features?

What Design Decisions Can We Make?

- 1. Feature "ExpressUp" is in the architecture.
- 2. "WinArbiter" function is implemented in hardware.
- 3. The "Switch" device node is smart
- 4. The "DoorModule" device node is present in the architecture

....

5. The "winCmd" function connector uses the "localDoorBus" bus connector to communicate.

Combine the system model with variability

What Design Constraints and Objectives Can We Have?

System]				
Feature Model				Parts Cost	
Functional Analysis Architecture	ency	ass	s Cost		
Hardware Design Architecture	Lat	Σ	Part	rranty	
Device Node Classification Power				Wai	
Communication Topology Topology					
					1

- The end to end latency for the timing chain from the "WinSwitch" function to the "WinMotor" function is less than 500 ms.
- 2. Minimize the total mass of the system

...

Generalizing the Possible Specifications

Reference Model	Template Design Decision	Quality Attribute	Template Design C	Constraint			ID
Concept		Timing (End-to-End	The end-to-end latency for timing chain X must be $\langle less greater \rangle \langle th \rangle$		han than or equal to>	DC1	
Features	Feature X is present in the architecture	Latency)	The largest end-to-en	ad latency difference for timing chains $1 + \infty = V$	s X(1), X(2	2),, $X(n)$ must be	DC2
Functions & Connectors	Function X is deployed to device node(s) Y(1) or Y(2) or Y(m) Function X is present in the architecture Function connector X is present in the architecture Function X is implemented in <hardware software></hardware software>	Timing (Margin)	$\frac{(\operatorname{Acss}[\operatorname{reater}) < \operatorname{Chan}[\operatorname{than}] \operatorname{Green}}{\operatorname{Tree}} I \\ \qquad \qquad$			uirement latency of Y end-to-end latency(s) maximum> must be	DC3 DC4
Device Nodes	Device node X is <smart electric electronic power=""> Device node X is present in the architecture</smart electric>	Mass				or equal to> Y reater> <than than or<="" td=""><td>DC5 DC6 DC7</td></than than>	DC5 DC6 DC7
Power Connectors	<pre><load device> power connector X is present in the architecture The <load device> power connector X should be provided <to from> device node(s) Y(1) or Y(2) or Y(m)</to from></load device></load device></pre>	Parts Cost	to of the architecture must be $<$ less greater> $<$ than than or equal to> Y \leq must be $<$ less greater> $<$ than than or equal to> Y \leq cost of components X(1), X(2), X(n) must be $<$ less greater> $<$ than than or equal to> Y \leq must be $<$ less greater> $<$ than than or equal to> Y \leq must be $<$ less greater> $<$ than than or equal to> Y \leq must be $<$ less greater> $<$ than than or equal to> Y \leq must be $<$ less greater> $<$ than than or equal to> Y $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$				
Communication Connectors	$\langle Bus Discrete Analog \rangle$ connector X is present in the architecture Function connector X does not use a hardware connector to communicate Function connector X uses connector(s) Y(1) or Y(2) or Y(m) to communicate	Warranty Parts Cost	Quality At-	Template Design Objec- tives	ID	$\frac{1}{an than or equal to>}$	DC11
	Bus Connector X is of type <lin low can flexray="" can high="" speed=""> The <bus discrete analog> connector X should have device node(s) Y(1) or Y(2) or Y(m) as endpoints</bus discrete analog></lin low>		Timing (margins)	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	DO1 DO2 DO3	t be <less greater></less greater>	DC13
			Parts Cost	<maximize minimize>thetotal cost of the architecture</maximize minimize>	DO4	-	
			Warranty Parts Cost	Aximize Minimize> the total warranty of the archi- tecture	DO5	-	13

Example

Emily is tasked with designing the

RQ2: Are there design exploration scenarios in which considering our reference model we can consider while others can not?

is irrelevant but <u>mass should be</u>, one freque the end-to-end be included. Lastly, designs. Additionally, since its a high end car, <u>all features should be included</u>. Lastly, <u>the end-to-end latency for pinch detection to react and reverse the motor should be</u> <u>less than 200 ms.</u>

Feature "ExpressUp" is in the architecture AND The end-to-end latency for timing chain PinchDetection_TC must be less than 200 ms AND Minimize the total mass of the architecture

How Is This All Possible?

Visualizing Tradeoffs With Clafer Web Tools

17

Case Studies

https://github.com/gsdlab/ClaferCaseStudies/tree/master/PlainClafer/Automotive/ BodyDomain

Power Window Feature Model

Door Locks Feature Model

Model Sizes

	Single Door Power Window	Two Door Power Window	Central Door Locks
Features	3 (2)	6 (4)	7 (6)
Analysis Functions	3 (1)	6 (2)	3 (2)
Functional Devices	4 (1)	9 (2)	33 (15)
Deployment Configurations	64	4096	96
Function Connectors	6 (2)	7 (4)	33 (18)
Device Nodes	6 (2)	10 (3)	21 (14)
Discrete/Analog Connectors	13 (13)	18 (18)	34 (30)
Bus Connectors	1 (1)	2 (1)	2 (1)
Number of Variants	32 thousand	> 959 million	~ 2 thousand

How Does Our Approach Compare?

Scenario	Tools						
	ArcheOpterix	AF3	OSATE	AAOL			
RQ1: What aspects of ou in current meta-models f supported by reasoning?	r reference model are for E/E architecture? (e unique and not four Or are found but not	nd P RQ1 Answer: F function imple connectors, an	eatures, variability a mentation, discrete/a d power topology	t all layers, analog		
		ally check satisfiable de- ployments.					
Dumb vs. Smart	No. Can't model switches and motors, discrete/ana- log connectors. No support for warranty cost.	No. Can't model dis- crete/analog connectors. No support for warranty cost.	No. No optimization sup- port. No support for war- ranty cost. However, non- smart devices can be mod- eled.	No. Can't model dis- crete/analog connectors. No support for warranty cost.			
High-end car	No. Can't constrain the la- tency of specific function combinations.	No. No optimization or modeling support for mass.	No. No optimization support, however detailed latency analysis can be done.	No. Can't constrain the latency of specific function combinations.			
Economy car	No. Can't model variable features.	No. Can't model variable features.	No. Can't model variable features.	No. Can't model variable features.]		
Distributed vs. Centralized	No.	No. However, there is support to specify more than one deployment.	No. However, one could specify multiple system im- plementations to model two of the variants.	No. However, they have shown how they can model this for different qualities.	22		

A Closer Look at the Economy Scenario

Θ		P	arallel Coordinates	Chart			?	⊖ ⊕	Var	iant Comparer			?
	#variant				totalCa	rCost [min]		totalCarMass		12	837		^
>	20					7		totalCarCost = 223		12 C	3		
	10							totalCarWarrantyCo	st	12	³ 6452		
								TimingRequirements	5 = J				
								TimingRequirements	s.BasicEndToE	EndLatency ? = 2	3		
RQ2: Are th	ere design e	xploratio	n scenari	os in whic <mark>ł</mark>	n conside	ering our		TimingRequirements	s.PinchDetect	ionEndToEndLat	:e 3		
reference m	reference model we can consider while others can not?								TimingRequirements.ControlInputSynchLatency ?				
								D	ifferences		× 7	×	8
								DriverWinSys.DWin	SysFA.Switch	ToControlDevice	eL 30	25	
	2-					RQ2 Ans	wer: \	/es!					
⊖ ⊕				Fe	ature and Quality	Matrix							?
Search: search	Distinct Reset filters	Save all variants	7 out of 21 varia	nt(s) satisfy the crite	ria Shown all ma	tching 🗹 Show ne	sted quality	attributes					
Model	\ Variants	× 7	×	8 ×	9	× 18	; Þ	(19	×	20	×	21	
DriverWinSys = 🤉													
DWinSysFM = ⊐													
basicUpDown =													
express ? 🤉		Ø	Ø	\checkmark		\bigcirc	6	D	\checkmark		\bigcirc		
expressUp ?	<u>.</u>		\odot	\checkmark		\bigcirc	6	D	\bigcirc		\bigcirc		
DWinSysFA = 🤉													
SwitchToControlDevi	ceLatency	30	25	25		30	3	30	25		25		

Looking at the Chocosolvers Performance

	Single I	Door Pow	er Window	Two D	wo Door Power Window		Door Locks		
Design Spec.	Solving Time (s)	Std. Dev. (s)	Number of Instances	Solving Time (s)	Std. Dev. (s)	Number of Instances	Solving Time (s)	Std. Dev. (s)	Number of Instances
DD1	5.3	0.6	10	14.38	1.6	10	270.11	10.9	10
DD2	5.12	0.3	10	14.63	1.6	10	77.74	2.7	10
DD3	5.67	0.5	10	13.5	2.3	10	270.9	10.6	10
DD4	5.37	0.5	10	13.65	2.4	10	402.79	7.1	10
DD5	5.29	0.5	10	13.65	1.9	10	76.2	2.0	10
DD6	5.1	0.3	10	14.91	2.5	10	270.62	6.1	10
DD7	5.46	0.2	10	428.8	10.0	10	272.15	6.8	10
DD8	4.58	1.0	10	14.82	2.9	10	21.63	1.7	10
DD9	4.54	0.8	10	15.87	1.6	10	77.02	3.5	10
DD10	4.66	0.4	10	12.02	2.3	10	27.15	2.4	10
DD11	5.62	0.3	10	13.99	2.2	10	82.41	2.5	10
DD12	5.07	0.3	10	14.7	0.7	10	79.8	1.1	10
DD13	4.61	0.3	10	12.19	2.1	10	25.59	2.1	10
DD14	17.2	1.0	10	Timeout	-	-	75.15	1.3	10
DC1	4.37	0.4	10	13.69	2.1	10	76.44	1.5	10
DC2	4.88	0.4	10	13.8	2.5	10	78.03	2.9	10
DC3	4.62	0.3	10	14.18	2.0	10	76.81	1.6	10
DC4	5.16	0.4	10	14.61	1.6	10	76.95	1.8	10
DC5	4.7	0.4	10	151.5	6.4	0	80.38	2.0	DC8
DC6	4.61	0.4	10	14.7	1.6	10	75.81	1.9	
DC8	4.74	0.3	10	Timeout	-	-	223.52	5.1	DO1
DO1	Timeout	-	-	Timeout	-	-	Timeout	-	DO2
DO2	Timeout	-	-	Timeout	-	-	Timeout	-	
DO3	30.96	1.5	9	Timeout	-	-	201.13	1.6	
DO3, DO4, DO5	37.87	1.5	9	Timeout	-	-	Timeout	-	DO3, DO4, DO5

RQ4: Is it even feasible to ask the individual design decisions, constraints, and objectives shown earlier?

RQ4 Answer: The majority are feasible however, there are issues in when trying to find all optimal solutions.

	1	1	1	1		1	1	i i i i i i i i i i i i i i i i i i i	i i i i i i i i i i i i i i i i i i i
DC8	4.74	0.3	10	Timeout	-	-	223.52	5.1	2
DO1	Timeout	-	-	Timeout	-	-	Timeout	-	-
DO2	Timeout	-	-	Timeout	-	-	Timeout	-	-
DO3	30.96	1.5	9	Timeout	-	-	201.13	1.6	1
DO3, DO4, DO5	37.87	1.5	9	Timeout	-	-	Timeout	-	-

Looking at the Chocosolvers Performance

		r Window				
Scenario	RQ5: Is it feasingle and tw	sible to ask th o door powe	ering the	ev. Number of Instances		
1 - With ECU	210.20	1.0	00	90.01	0.4	0
1 - No ECU	27.12 RQ	5 Answer: It i	s feasible whe	n considering the	-	-
2	5.13 sing	gle door pow	1.0	10		
3 - Smart	280.2	door case.			-	-
3 - Dumb	23.93	0.5	6	Timeout	-	-
4	25.56	0.6	3	Timeout	-	-
5	29.33	0.8	21	Timeout	-	-
6 - Centralized	-	-	-	Timeout	-	-
6 - Distributed	-	-	-	Timeout	-	-

Conclusion

- Presented a reference model for early design of E/E architectures.
- Showed how the reference model can be used to model a power window architecture that expresses millions of candidate designs.
- Highlighted where our approach surpasses current tooling.
- Room for future work...
 - Improve performance of analysis
 - Model simplification
 - Solvers
 - Surrogate models
 - Extending our reference model to accommodate fault tolerant architectures.
 - Refining the early design candidates to detailed designs.
 - ROI for design exploration tools.

Thanks for Listening!

Questions?