Software & Systems Modeling (2019) 18:1571-1573
https://doi.org/10.1007/510270-019-00734-z

EDITORIAL

f')

Check for
updates

Conceptual distance of models and languages

Jeff Gray' - Bernhard Rumpe?

Published online: 7 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Conceptual distance (i.e., measurement of the distance
between two sets of concepts) had its roots in linguistics
as the semantic distance problem. In the linguistics con-
text, conceptual distance provides a metric of the difficulty
in understanding a topic across different disciplines or sub-
ject areas. However, it seems that there is no commonly
agreed and well-founded theory that allows measurement of
the distance between two sets of concepts. We believe that
it is worthwhile to measure the conceptual distance between
models, and also between languages.

In the domain of conceptual modeling, which emerged
from entity—relationship modeling, models are usually
explicit, describing the concepts (e.g., classes in OO), their
properties (e.g., attributes in OO) and relationships (e.g.,
associations in OO). The conceptual distance between two
models can be measured syntactically by comparing com-
monly occurring concepts, properties and relationships,
versus elements that only exist in one of the models. This
is easy to implement, but does not reflect that semantically
equivalent models may exist, even if their syntactic repre-
sentations differ. The syntactic differences may emerge from
the use of synonyms for similar terms, or from structurally
equivalent but inequal concept/relationship formalizations.
A conceptual distance measurement based on semantic dif-
ferences should consider the semantics of two conceptual
models and compare the sets of described instances in a
meaningful way. In conceptual modeling, semantics is usu-
ally an infinite set of instances (e.g., object structures in OO).
Conceptual distance may be difficult to measure accurately.

In a development project, it is often desirable to identify
differences of evolved versions of models. This is true for
all modeling languages such as code, state machines, class
diagrams, use case diagrams or any specific DSL. A pure syn-

B Bernhard Rumpe
bernhard.rumpe @sosym.org

Jeff Gray

jeft.gray @sosym.org
1 University of Alabama, Tuscaloosa, AL, USA
2 RWTH Aachen University, Aachen, Germany

tactic interpretation of the conceptual distance can be defined
generically by comparing the two models of a language and
counting differences and similarities for each language con-
struct (e.g., comparing “classes,” “attributes,” “states” or any
other language construct). A somewhat smarter syntactic
measurement could count “compatible” types as similar ele-
ments (e.g., int and long). Other similarity metrics could be
based on the renaming of an element using a synonym. Such
smart measurements exist and can assist in identifying vari-
ants of models in a product line development setting.

If the meaning of a model (i.e., its semantics) shall be used
to measure conceptual distance of two models, then the sit-
uation becomes rather diverse. For the category of structural
models (e.g., conceptual models, architectural models, block
or class diagrams), conceptual distance of two models needs
to compare the sets of possible instantiation structures (which
are sets of sets of elements, e.g., objects). For the category
of behavioral models, the set of possible behavior executions
(e.g., sets of traces) and their differences should be analyzed.
The conceptual distance of behavioral descriptions can be
defined inductively over time, because there is a starting
point, namely time point 0, from where all behaviors initiate.
Similarity of behavior descriptions should typically regard
the time point of the first deviation of two behavioral execu-
tions: The earlier the deviation can be observed, the larger
the distance. All of these considerations are complicated by
non-deterministic behavior of the described implementation,
non-deterministic behavior of the environment, under spec-
ification of the models (which is not exactly the same, but
similar to a non-deterministic implementation) and the possi-
bility to add probabilities to all of the relevant concepts. This
also contributes to the challenge of measuring conceptual
distance accurately.

Beyond comparing individual model instances, it is also
possible to compare the conceptual distance between two
languages. Such a comparison can be helpful when there
is a need to understand the differences between two pro-
gramming languages, or also when trying to understand the
differences between two modeling languages (or two variants
of the same modeling language) that should be used for the

29 <,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00734-z&domain=pdf

1572

J. Gray, B. Rumpe

same purpose. Two possibilities exist for such comparisons:
(1) When using meta-models (or grammars) to describe lan-
guages, we can apply conceptual distance techniques to the
meta-models (or grammars) similar to the instance models
mentioned earlier, and (2) we can also analyze the distance
by mapping one language construct to a similar construct in
the other language (we will call this encoding). This is very
common when learning a new programming language by
trying to understand how expressions, statements, case dis-
tinctions, loops, lambda-abstractions or functions are defined
in terms of other known languages. This mapping also assists
in identifying the absence of a familiar and helpful construct
in one language that may not be available in another language.
However, this approach does not always allow objective mea-
surements, but only gives an informal understanding of the
conceptual distance of languages.

Using the encoding approach, we might argue that as the
conceptual distance between languages increases, the com-
plexity of the encoding also increases.

e i

[system |

conceptual distance still needs to be kept manageable. As
a natural consequence, in software-intensive complex sys-
tems we can observe with increasing frequency that the
development paradigm used in the early stages may influ-
ence the implementation. For example, using a component
connector architecture for high-level models of automotive
software will probably lead to the explicit existence of com-
ponents, connectors and ports in the final implementation.
The explicit existence of these constructs that exist in the
modeling languages creates overhead in the implementation,
but also keeps the development process manageable, more
efficient and potentially less erroneous. Furthermore, vari-
ant management and reusability will probably increase. A
similar phenomenon occurs in workflow-intensive systems,
where workflow descriptions are based on modeling tech-
niques to organize and understand the system. Such systems
very explicitly know and manage the workflows and their
respective states.

As a logical consequence, it can be observed that the
form of the high-level modeling languages used to describe

use cases and scenarios:
sequence diagrams describe users viewpoint

application classes define data structures

state machines describe
states and behavior

technical class diagram
adaptation, extension, technical design

+ behavior for technical classes

code generation +
integration with manually written code

complete and running system

These observations lead us to an interesting point about
software engineering, from the simple viewpoint of start-
ing with a set of informal requirements, which are mapped
down through several high-level and low-level model for-
malizations (as shown in the figure), and finally end up
in an executable implementation. Between each of those
modeling levels, the conceptual distance must be small
enough such that we can manage a systematic, sound map-
ping between the levels. Usually, these mappings are not
exactly systematic encodings, but also add a lot of addi-
tional human-constructed design decisions. However, the

@ Springer

a system varies much according to the shapes, structure and
architecture of the implementation, as well as the abstrac-
tions available in the implementation. This helps to keep the
conceptual distance between requirements and implementa-
tion small and the development manageable. Interestingly,
this is different from other engineering domains (e.g., archi-
tecture), where the existence or form of models and plans has
no impact on the created building.

There is much more to be said about conceptual distance.
We look forward to seeing novel contributions to SoSyM



Conceptual distance of models and languages

1573

that describe investigations into either specific languages or
as general considerations toward a theory of measuring con-
ceptual distance.

1 Welcome to new editors!

With several editors retiring last year, along with an increase
in submissions and new modeling topic areas emerging, we
are happy to announce seven new distinguished members of
the modeling community who have joined the SoSyM Edito-
rial Board. They are: Silvia Abrahdo, Nelly Bencomo, Didier
Buchs, Dimitris Kolovos, Jan Mendling, Iris Reinhartz-
Berger, and Davide Di Ruscio. We look forward to working
with our new Editors in the future!

2 Content of this issue

This issue contains a Theme Section, two Special Sections
and 14 Regular papers as follows:

1. Theme Section on model-based design of Cyber-Physical
Systems
Guest Editors: Manfred Broy, Heinrich Daembkes, and
Janos Sztipanovits
2. MODELS 2016 Special Section
Guest Editors: Jorg Kienzle and Alexander Pretschner
3. EMMSAD 2017 Special Section
Guest Editors: Iris Reinhartz-Berger, Wided Guédria, and
Palash Bera
4. Regular Papers

e “A feature-based survey of model view approaches”
by Hugo Bruneliere, Erik Burger, Jordi Cabot, and
Manuel Wimmer

e “Introducing probabilistic reasoning within Event-B”
by Mohamed Aouadhi, Benoit Delahaye, and Arnaud
Lanoix

e “A model-driven framework for developing multi-
agent systems in emergency response environments”
by Samaneh HoseinDoost, Tahereh Adamzadeh, Bah-
man Zamani, and Afsaneh Fatemi

e “Anintegrated metamodel-based approach to software
model refactoring” by Mohammed Misbhauddin and
Mohammad Alshayeb

e “Template-based model generation” by Xiao He, Tian
Zhang, Minxue Pan, Zhiyi Ma, and Chang-Jun Hu

e “Transforming XML schemas into OWL ontologies
using formal concept analysis” by Mokhtaria Hacher-
ouf, Safia Nait-Bahloul, and Christophe Cruz

e “Consolidation of database check constraints” by
Nikola Obrenovic, Ivan Lukovic, and Sonja Ristic

e “Multidimensional context modeling applied to non-
functional analysis of software” by Luca Berardinelli,
Marco Bernardo, Vittorio Cortellessa, and Antinisca
Di Marco

e “Enabling automated requirements reuse and configu-
ration” by Yan Li, Tao Yue, Shaukat Ali, and Li Zhang

e “Example-driven modeling: on effects of using exam-
ples on structural model comprehension, what makes
them useful, and how to create them” by Dina Zayan,
Atrisha Sarkar, Michal Antkiewicz, Rita Suzana
Pitangueira Maciel, and Krzysztof Czarnecki

e “Towards a model-driven engineering approach for the
assessment of non-functional properties using multi-
formalism” by Simona Bernardi, Stefano Marrone,
Jose Merseguer, Roberto Nardone, and Valeria Vit-
torini

e “Tradeoffs in modeling performance of highly config-
urable software systems” by Sergiy Kolesnikov, Nor-
bert Siegmund, Christian Késtner, Alexander Greb-
hahn, and Sven Apel

e “An integrated conceptual model for information sys-
tem security risk management supported by enterprise
architecture management” by Nicolas Mayer, Jocelyn
Aubert, Eric Grandry, Christophe Feltus, Elio Goettel-
mann, and Roel Wieringa

e “Execution of UML models: a systematic review of
research and practice” by Federico Ciccozzi, Ivano
Malavolta, and Bran Selic

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer



	Conceptual distance of models and languages
	1 Welcome to new editors!
	2 Content of this issue




