Softw Syst Model (2013) 12:439-440
DOI 10.1007/s10270-013-0362-4

EDITORIAL

Model-based lifecycle management of software-intensive systems,

applications, and services

Robert France - Bernhard Rumpe

Published online: 18 June 2013
© Springer-Verlag Berlin Heidelberg 2013

The lifecycle of a successful system is the time period that
covers all activities associated with developing, configuring,
deploying, operating, and retiring the system. Variations in
system lifecycles can be expected, for example, differences
may arise as a result of the inclusion of physical parts in the
system and the number of installations. In addition, software
retirement activities may extend over a long period of time,
for example, in cases where access to data provided by a
system may be required long after the system is terminated.

Lifecycle management has a lot to do with managing the
available information about a system. A significant amount
of this information can typically be found in the models pro-
duced during various development. Software models can thus
play a vital role in system lifecycle management. For exam-
ple, requirement models can be used to support management
of requirements, feature models can be used to manage sys-
tem and user specific variabilities as well as commonalities,
and architecture and design models can provide information
that support management of deployment and validation activ-
ities. The potential role that models can play in lifecycle man-
agement raises the following questions: “To what extent do
the models produced during software development help (or
hinder) lifecycle management?” “Should the software mod-
eling activity be integrated with the lifecycle management of
systems, and, if yes, how can this be done?” “What tools are
needed to better leverage the use of models in lifecycle man-
agement?” “Does a model also have a lifecycle that needs to
be managed?”

R. France
Colorado State University, Fort Collins, Colorado, USA

B. Rumpe (X))
RWTH Aachen University, Aachen, Germany
e-mail: Bernhard.Rumpe @sosym.org

A variety of models may be needed to support lifecy-
cle management, each describing a particular aspect of the
system for particular lifecycle management purposes. In
such situations, it is important to have an understanding
of how the models relate to each other. Such an under-
standing is needed, for example, to develop appropriate
technologies for maintaining consistency across the models
and for managing the propagation of changes across the
models.

In various conferences, workshops and discussions, we
have observed the following model and language integration
trends:

e Integration of heterogeneous models and of their cor-
responding modeling languages remain a challenging
research problem. For example, the many semantic vari-
ation points in the UML make it difficult to produce an
integrated, semantically coherent language in which the
variation points are resolved in a consistent manner. It
may also be the case that the manner in which the UML
notations are integrated vary, leading to the need to sup-
port variations on the forms of integration.

e Providing effective support for model evolution is still
a pressing problem. Some of the challenging problems
include developing support for semantic differencing
(diffing) and merging of models. For graphical model-
ing languages, the lack of support of modularity and
encapsulation in modeling languages, as well as their
two-dimensional graphical nature, presents challenges;
comparing text on a line basis is much easier than com-
paring model elements arranged in graph structures.

e The need to provide support for tracing information
through various models is widely appreciated, particu-
larly in software evolution activities. We suspect that this
problem is best tackled by developing language-specific

@ Springer



440

R. France, B. Rumpe

solutions, rather than general solutions that are language
agnostic.

Language and model integration is particularly chal-
lenging when there is a need to model non-software
aspects of a system. For example, in the domain of
cyberphysical systems, language integration involves
providing the means to integrate underlying “commu-
nication” paradigms, namely calculi from control the-
ory, physics, and engineering disciplines with the digital
state based theory from computer science. Such integra-
tion should lead to better model-based lifecycles of these
systems.

We anticipate that a variety of domain specific lan-
guages will be more widely used in software development
projects, and thus support for integrating DSLs with gen-
eral purpose modeling and programming languages will
be needed.

Variability of hardware and software is often handled
externally to modeling languages, but it may be more
effective to provide support for such variability within the
languages. An approach to managing variability in pro-
duct lines that is built on top of modeling languages may
help to some extent, but a language-integrated approach
that leverages context conditions and language semantics
may be more effective.

Semantic integration of models is furthermore needed
in situations in which integrated models are used as the
basis for static or dynamic analysis (e.g., formal analysis
of functional properties and simulation). Few integration
techniques adequately address semantic issues.

@ Springer

e Recent research has focused on the use of models at run-
time to support runtime adaptation of software. For exam-
ple, in plant control systems an explicit representation
of the controlled plant that faithfully captures monitored
aspects of the plant can be used as the basis for adapt-
ing the plant control software. Runtime models cannot
be distinguished anymore from requirements and design
models produced during development, in terms of the
abstractions they embody. From this perspective, the life-
cycle of requirements and design models extends beyond
the development and maintenance phase into the ope-
rational phases. In fact, using these models at runtime
makes the models an integral part of the operation of the
system, while at the same time, enables evolution of the
running system through evolution of the runtime models.
This integrated co-evolution can be viewed as a form of
lifecycle management based on these models.

In summary, the use of models in system lifecycle manage-
ment raises interesting and challenging research opportu-
nities. Furthermore, we in the software and system model-
ing community cannot ignore lifecycle management issues:
As the use of models becomes more widespread, the need
for lifecycle management of models will become necessary.
Sound lifecycle management of development artifacts is a
core competence of integrated software-intensive systems
development and becomes even more pressing in the con-
text of globalized software development environments.



	Model-based lifecycle management of software-intensive systems, applications, and services

