
Softw Syst Model (2012) 11:1–2
DOI 10.1007/s10270-011-0224-x

EDITORIAL

On the relationship between modeling and programming
languages
Editorial for the SoSyM Issue 2012/01: Part 1

Bernhard Rumpe · Robert France

Published online: 18 December 2011
© Springer-Verlag 2011

At the MODELS 2011 conference in New Zealand, Colin
Atkinson, held a panel on “When will Code become Irrele-
vant?”. The panelists were requested to answer the following
six questions:

1. Do you agree with the implied assumption in the panel
abstract that “code” is different to “models, at least in
the minds of practicing software engineers?

2. If so, do you agree with the premise that code is still the
primary artifact, or at least still an important artifact, in
software engineering?

3. If so, do you think it matters?
4. If so, when if ever, will the situation change and what

will it take to make it happen?
5. What can the research community do to help bring this

about?
6. What will the future of modeling look like? Does mod-

eling have a future as an independent activity or will it
fade away in importance?

Software developers create and use models for a variety
of purposes. For example, the following are three common
forms of uses:

• Models as sketches: Developers find it useful to sketch
descriptions of requirements, design or deployment con-
cepts on whiteboards or paper when discussing their ideas
with other developers or customer representatives. This

B. Rumpe (B)
RWTH Aachen University, Aachen, Germany
e-mail: Bernhard.Rumpe@sosym.org

R. France
Colorado State University, Fort Collins, Colorado, USA

use of models supports exploratory development of con-
cepts and ideas that may or may not later find their way
into more formal models or implementations.

• Models as analysis artifacts: Developers build analyzable
models to check specified properties (e.g., consistency
and satisfiability properties), to predict implementation
qualities (e.g., performance), or to simulate implemented
behavior. Included in this category of models are formal,
non-executable specifications that can be statically ana-
lyzed, and executable models that support more dynamic
forms of analysis. These models typically contain only
the information needed to analyze target properties, and
thus may not include information that is needed to gen-
erate full implementations.

• Models as the basis for code generation or synthesis of
software artifacts: Models can be built for the purpose
of generating implementations, test cases, deployment or
software configuration scripts, or other software artifacts.
These models must contain all necessary information in
a form that allow a generator to mechanically synthesize
software artifacts.

One of the most important uses of modeling techniques and
languages is to build executable models. Executing a model
often involves code generation. From a practical standpoint
it makes a difference whether the developer’s intent is to pro-
duce industrial-strength code when executing a model, or to
produce code that animates modeled behavior to provide the
developer with feedback on the adequacy of the model., One
can expect that in the first case the generated code is of better
quality (e.g., more robust) than the code generated for solely
animation purposes. One can also distinguish between code
generation in which modeled behavior is hardwired in the
implemented system, and generation of implementations that
are configurable at system initialization or even at runtime.

123



2 B. Rumpe, R. France

The constituents of an executable model are not neces-
sarily restricted to behavioral models such as Statecharts
or activity diagrams. Structural models, such as UML
class diagrams and composition structure diagrams can also
contribute to the execution of models. These models provide
information on the structures that are manipulated by behav-
iors and thus their elements contribute to the generation of
data and information structures in implementations.

Modeling languages that support the building of execut-
able models can be viewed as approximate forms of very
high-level programming languages, that is, languages above
the current high-level general-purpose programming lan-
guages (GPL). We use the term “approximate forms” because
we do not consider that current modeling languages can com-
pletely replace or mask out GPLs; there may be particular
algorithmic elements that probably cannot and should not be
modeled in a more abstract way than through statements in a
GPL. The term “very high-level” is used to reflect our view
that models are more abstract and compact than implementa-
tions expressed in a GPL. For example, technical details (e.g.,
details related to efficient implementations of complex data
structures) and domain-specific functionality can be added
through intelligent code generators and therefore need not
be present in the model used to generate the code.

If we look at today’s coding techniques, we can identify
quite a number of best practices that are based on abstrac-
tions that are more conveniently represented in design mod-
els. The state pattern (GOF 1993) provides one such example.
Extracting these abstractions from best practices and incor-
porating them into modeling languages can help promote the
use of these best practices. Furthermore, the explicit repre-
sentation of these abstractions in modeling languages makes
it easier to maintain, evolve and reuse the abstractions. The
development of modeling languages can thus benefit from an
analysis of best coding practices. Below we give our view on
why this can be challenging.

First, there is currently no successful tight integration
between modeling and programming technologies. Modeling
tools are typically heavy weight and not easily integrated with
others software development tools. They are heavyweight in
that they force developers to describe modeled elements in a
detailed form, before code generation can be performed. Fur-
thermore, developers often have to augment the generated
code with manually written code fragments, and thus they
need to read and understand the generated code in addition to
the original model. Another problem is that many tools do not
support automated synchronization of models and generated

code when changes occur in either the code or the models.
If developers manually modify generated parts of the code,
the lack of automated synchronization could result in a loss
of fidelity between the model and the code implementation.
This makes re-generation very difficult, if not impossible.
What we propose is needed are lightweight approaches for
the integration of models and implementations expressed in
a GPL that allows developers to manage both models and
GPL programs without directly viewing and manipulating
generated code. To our knowledge, current tooling does not
support this. While modern IDEs allow developers to effec-
tively manage source code, they do not provide effective sup-
port for generating code from models, primarily because they
handle generated code in much the same way as hand written
code. This frequently leads to problems with refactoring as
well as versioning, and can complicate the building process.

Another major problem that the modeling community cur-
rently encounters is the lack of modularity. Good modular-
ity allows a developer to encapsulate strongly related design
concepts in a single code module (e.g., a procedure or class)
and to expose only the information needed by other mod-
ules through an interface. This is the major driving force for
incremental compilation, reuse, use of code libraries, divid-
ing work amongst team members, and therefore provides the
means to scale development projects. With the exception of
Matlab/Simulink, today’s modeling languages do not support
the definition of an “interface” for a model. The lack of inter-
faces leads to a different handling of models during the devel-
opment process. Tools typically load a single large model in
their workspace (we can be glad that we have enough space
to actually do this) and therefore expose developers to all
the details of the model. Any change in the model, no mat-
ter how small, typically enforces a complete regeneration.
Models are thus monolithic entities that expose all details
to developers. This makes reuse of models challenging and
gets in the way of developing libraries of reusable model
fragments. As long as we are not able to deal with models
in a modular way, the cost of developing and using models
of complex systems may outweigh the benefits of using the
models in the development process.

They are other aspects of code management that can
be considered when developing effective model manage-
ment technologies, namely, differencing, merging, version-
ing, management of variability and refactoring. In summary,
we feel there is a need to provide a tighter integration of mod-
eling and programming technologies if we are to see more
widespread use of modeling technologies in practice.

123


	On the relationship between modeling and programming languages
	Editorial for the SoSyM Issue 2012/01: Part 1

