
Software & System Modeling (2006) 5(1): 1–2
DOI 10.1007/s10270-006-0008-x

EDITORIAL

Robert France · Bernhard Rumpe

Modeling the Complex Living World

Published online: 14 March 2006
c© Springer-Verlag 2006

In the software development domain, models of software
systems are typically used to understand and predict proper-
ties of the system or to produce implementations. A model is
normally created before the software system is implemented
and, in many cases, acts as a specification of behavioral and
structural properties that must be present in implemented
systems. In theory, implementations can be generated from
formal models in a manner that ensures their correctness
with respect to the models.

In other non-engineering disciplines, models are used
differently. For example, physicists use models primarily to
understand and explain phenomena that occur in the world
around them. They build models that are consistent with
their observations of the phenomena, and they test the mod-
els to determine their fidelity and the circumstances under
which the models make accurate predictions. Unlike soft-
ware models, formal models of physical systems typically
describe continuous behavior (with very few non-continuous
disruptions) and therefore use concepts from continuous
mathematics (e.g., differential equations).

It may seem that scientists in non-engineering disci-
plines have very little use for software modeling techniques,
but the complex problems that are currently tackled in the
Life Sciences area indicate otherwise. Scientists in the Life
Sciences tackle highly-complex problems that involve study
of organs, cells, proteins and organic molecules that ex-
hibit continuous as well as discrete, non-deterministic be-
havior that can be described in terms of state transitions.
Bio-technological models describe state-based phenomena
and are primarily used to understand the phenomena and to
predict behavior in a variety of situations. Accurate mod-
els pave the way for the engineering of medicines and for
the development of sophisticated “biological tools” to fur-
ther improve our lives.

Scientists in Life Sciences currently use software mod-
eling techniques to describe discrete behaviors. What needs
to be determined is whether current modeling techniques
actually meet the needs of scientists in the Life Sciences.

Specifically, answers to the following questions are needed:
Are the concepts provided by current software modeling lan-
guages sufficient to describe the discrete aspects of phenom-
ena in Life Sciences? Can scientists in the Life Sciences
benefit from the use of domain-specific variants of general
purpose software modeling languages? Furthermore, the is-
sue of how to disseminate knowledge about software mod-
eling techniques in the Life Sciences needs to be addressed.
Is there a need for software modeling training and educa-
tion programs that target scientists in the Life Sciences or is
there a need for a program that integrates Life Sciences and
Computer Science (as extension to bio-informatics)?

We would like to see SoSyM become a vehicle for com-
municating high-quality work that involves analyzing the
application of software modeling techniques in domains
such as the Life Sciences. We strongly encourage authors
working on novel applications of software modeling tech-
niques in domains such as the Life Sciences, Economics and
Social Sciences, to submit papers describing their results to
SoSyM.

Contents in this issue

Trygve Reenskaug in his expert voice paper “The BabyUML
Discipline of Programming” examines the state of art in pro-
gramming over the last 40 years and offers a way to enhance
the control a programmer has its program. He discusses a
subset of UML that can be used to develop programs that
are more reliable and less error prone, because it allows the
programmer to develop a better understanding of the pro-
gram.

The second part of this issue contains five regular pa-
pers. The regular paper “Partitioning of Perfect Synchronous
Reactive Specifications to Distributed Processors using µ-
Charts” by Peter Scholz introduces a specific variant of Stat-
echarts that targets the modeling of distributed systems. µ-
Charts are used to partition a model into several sub-models
that can be implemented and deployed independently on dif-
ferent processors.



2 Editorial

Sometimes restricting expressivity of a language allows
one to deduce more from its models. In the regular paper
“Exploiting Practical Limitations of UML Diagrams for
Model Validation and Execution” Friedrich Steimann and
Heribert Vollmer discuss how to use UML’s limitations to
derive decidable static model analysis algorithms. The al-
gorithms provide results that can help a designer gain more
insight into what is modeled.

A basic tenet of modeling is the prediction (and later
controlling) of costs, timeline and quality of the system to
develop. The third regular paper “A Functional Size Mea-
surement Method for Object-Oriented Conceptual Schemas:
Design and Evaluation Issues” by Silvia Abrahao, Geert
Poels, and Oscar Pastor describes metrics to determine the
size of software based on a model of the development pro-
cess.

In the fourth regular paper “A Powertype-based Meta-
modelling Framework” Brian Henderson-Sellers and Cesar
Gonzalez-Perez describe a new approach to the construction
of metamodels that eases both development and understand-
ing of the constructed metamodel.

Ashley McNeil and, Nick Simons in the last regular paper
“Protocol Modelling. A Modelling Approach that Supports
Reusable Behavioural Abstractions” introduce a behavioural
modelling approach based on the concept of a protocol ma-
chine that aims to provide better encapsulation.

We hope you enjoy reading the articles in this issue.

Robert France
Bernhard Rumpe
Editors in Chief


