
Softw Syst Model (2005) 4: 1–3 / Digital Object Identifier (DOI) 10.1007/s10270-005-0078-1

Editorial

Domain specificmodeling

Robert France, Bernhard Rumpe

Published online: 25 January 2005 – Springer-Verlag 2005

Looking at other engineering disciplines, it is evident that
modeling is a vital and important part of the development
of complex artifacts. Good modeling techniques provide
support for the separation of concerns principle, rigorous
analysis of designs, and for structuring construction ac-
tivities. Models can play a similar role in the development
of software-based systems. Furthermore, the software de-
velopment activity has a characteristic not present in
physical engineering: deliverable products (software sys-
tems) can be generated from models (an observation
made by Bran Selic, IBM/Rational at an MDA summer
school). This characteristic can and should be exploited
in our quest to make software development an engineering
activity.
The current landscape of modeling languages is highly

diverse. Graphical languages, such as Petri Nets and Stat-
echarts have successfully been used for years. Standard-
ized languages such as the SDL have had a good base of
tool support but have seen their use in industry dimin-
ish over time. Languages can be specific to an applica-
tion domain (e.g., SDL was developed to support mod-
eling of telecommunication systems), to a development
phase (e.g., SCR method uses a language designed spe-
cifically for modeling requirements of reactive systems),
or they can be general-purpose (e.g., the UML). Recently,
much attention is on the development of domain-specific
languages (DSLs). Proponents of DSLs claim that their
use can help bridge the gap between a domain expert’s
view of a software system and its implementtion. The
domains covered by DSLs can range from highly individ-
ual application areas, such as “railroad planning applica-
tions” to broader domains, such as the “embedded system
domain”.
The UML was at first an attempt to unify various

object-oriented modeling languages, and it seemed that
its target applications were primarily business systems.
The UML is now being used to model applications and

concepts in a variety of domains, including embedded sys-
tems and business workflows. While this broadened the
scope of the UML it has made it difficult to develop se-
mantics that can be used to support its application in
a number of domains. This has led to the realization that
a single, consistent semantics that supports the use of the
UML may not be possible, and to the view of the UML
as a family of languages. There are currently a number of
semantic variation points in the UML to support this no-
tion. Developing a semantic framework for the UML that
takes into consideration its numerous variation points is
proving to be an extremely difficult task – and the im-
portant issues are not all technical!
It should not be surprising then that in specific do-

mains, the use of existing “domain specific languages”
persists. A DSL, let it be a programming or a modeling
language, has several advantages. Among them:

– Domain specific constructs are better suited for com-
munication with users in the domain. The users can
better understand the models if they are presented in
domain-specific terms. This leads to the claim that
domain specific models are better suited for require-
ments engineering than the UML.
– DSLs have restricted semantic scope (i.e., the number
of semantic variations they have to deal with is small
compared with general-purpose languages), thus de-
veloping a semantic framework is less challenging.
– Restricting semantic scope can lead to better sup-
port for generating implementations from models.
Given an appropriate component-framework that im-
plements individual constructs of the DSL, the com-
position of these components can lead to powerful
implementations.
– DSL’s increase domain specific reuse of components,
which can lead to improved the quality of systems
and order-of-magnitude improvements in time-to-

2 R. France, B. Rumpe: Domain specific modeling

market and developer productivity. Examples from
the telecommunication indicate that a speedup factor
of ten is possible.

So far DSL’s have been developed in an ad-hoc man-
ner, that is tooling was implemented without much reuse
of existing technology. Reuse was limited in some cases
to use of graphical framework for developing editors and
the use of parser generators for textual languages. More
recent work has focused on making the development of
DSLs more systematic. Among the DSL development en-
vironments that are being created are Meta-Editors and
graphical editor environments that allow developers to
quickly create new DSLs and associated editors. In the
MDA/MOF context, general data structures for the ab-
stract syntax of models and techniques for their trans-
formation are under development. Software companies
such as Microsoft have identified this as an important
area of development, and Microsoft and have released
early versions of DSL development environments.
The advent of frameworks for developing DSLs will

raise new challenges, some of which are identified below:

– If building or improving a DSL is a vital part of
a project, the development process needs to incorpo-
rate these new activities. = It is not yet clear if a new
breed of software development specialists (domain en-
gineers?) will be needed to effectively carry out these
new activities.
– Two questions that will have to be addressed can be
stated as follows: Is there a need for company or indus-
try wide standard DSLs? If yes, who will develop the
standards?
– If the burden of defining a new DSL becomes consid-
erably lower, we will probably see a large number of
DSLs created and used. The situation will be simi-
lar to the one faced with the use of XML-Dialects:
Many Dialects will appear and their interoperability
or translation between them will be a major problem.
This could give rise to a modeling Tower of Babel.
– To prevent the Tower of Babel, it might be necessary
to build DSLs on a common syntactical and semantic
base that reaches far beyond a common infrastructure
for defining abstract syntax. The UML might provide
such a base, but how can one derive a structural or
behavioral DSL from a sublanguage of the UML?
– A language should have a semantics (in its original
meaning of “meaning”). Will a DSL development
framework support practical definition of DSL seman-
tics of DSLs? How can this be done?

The editors look forward to an interesting discussion on
the above and other challenges related to the develop-
ment of DSLs.

TheMoDELS conference series

As some readers might know, the Software and Systems
Modeling Journal was born out of a stated need for a pre-

mier communication medium for topics related to mod-
eling. In this area of research and practice, The ¡¡UML¿¿
conferences have played a significant role in pusing the
state of the art in modeling and in evaluating modeling
experience. Readers of the first set of SoSyM special is-
sues will recall that they consisted of the best papers in
these conferences.
When the SoSyM journal started, it was already clear

that the UML will be an important but by not the only
modeling language. For this reason, SoSyM’s scope was
defined to be inclusive of all other software-based sys-
tem modeling languages.In the UML/modeling commu-
nity this was also clear:
45% of the papers at the �UML� conferences were

MDA-related papers, and many of those were not related
to UML. Keynotes of the�UML’2004� addressed topics
on software composition (Oscar Nierstrasz) and genera-
tive software development (by Krzysztof Czarnecki).
In 2005 the widening of the conference scope to all

modeling related topics will occur. The UML-conference
series will be renamed the

MoDELS-conference series,

where MoDELS is an acronym for “Model Driven En-
gineering Languages and Systems”. The successful UML-
series of conferences will continue and keep its focus on
models of software and software-related systems. How-
ever, it will have tracks for papers on UML, Model Driven
Architecture (MDA) and Domain Specific Languages
(DSL). For more details about the conference see the fol-
lowing website: http://www.modelsconference.org.

Papers in this issue

In the expert voice “UML – the Good, the Bad or the
Ugly?” Brian Henderson-Sellers compiled a set of pos-
ition papers on the new UML 2.0 standard. The papers
were written by experts who were directly involved in, or
influenced the UML development process. Each contribu-
tor had the opportunity to read and respond to other con-
tributions in the compilation.The contributors, namely,
Steve Cook, Steve Mellor, Joaquin Miller and Bran Selic,
highlight strengths and weaknesses of the UML 2.0, dis-
cuss improvements over previous UML versions, and gives
their perspectives on the future of the UML.
In the regular paper “Formal verification of soft-

ware source code through semi-automatic mod-
elling” Cindy Eisner describes experience related to the
verification of an implemented caching mechanism. The
verification involved generating a model from the imple-
mentation and running a model checker on the model to
verify desired properties . Experience reports can signifi-
cantly contribute to the development of the field and we
strongly encourage authors to submit high quality expe-
rience reports.
The regular paper “The KeY tool? Integrating

object oriented design and formal verification”

R. France, B. Rumpe: Domain specific modeling 3

by Wolfgang Ahrendt, Thomas Baar, Bernhard Beck-
ert, Richard Bubel, Martin Giese, Reiner Hähnle, Wolf-
ram Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager and Peter H. Schmitt describes a formal veri-
fication tool that uses the OCL as formal specification
language. The tool supports verification of programs
writtebn in a subset of the Java language.
In the regular paper “An approach for reverse en-

gineering of design patterns”, Ilka Philippow, Detlef
Streitferdt, Matthias Riebisch and Sebastian Naumann
describe a novel approach to detecting design patterns in
existing software products. The approach uses minimal
key structures and positive as well as negative search cri-
teria for its search and is able to detect all GOF design
patterns.
Jon Whittle, Richard Kwan and Jyoti Saboo describe

their experiences in applying sequence diagrams as a pri-
mary model notation in their regular paper “From sce-
narios to code: An air traffic control case study”.

They define a mapping algorithm that produces state-
charts from sequence diagrams, and they show how code
can be generated from the models.
In the final regular paper “A reference framework

for process-oriented software development organi-
zations”, the authors João M. Fernandes and Francisco
J. Duarte describe techniques for modeling development
processes. Instead of the usual application of models to
the software under development or to the environment
that uses the software, these models are used to struc-
ture the development process itself. The Rational Unified
Process was one of the first prominent approaches to ex-
plicitly use models and the authors embed this process
into their framework.

We hope you enjoy reading the articles in this issue,

Robert France, Bernhard Rumpe
Editors in Chief

