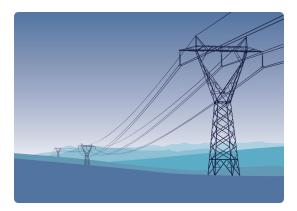
THE NEXT EVOLUTION OF MDE: a Seamless

Thomas Hartmann*, Assaad Moawad+, Fouquet François* and Yves le Traon* (*) Interdisciplinary Centre for Security, Reliability and Trust University of Luxembourg (+) DataThings S.A.R.L. Luxembourg

Some words about us...

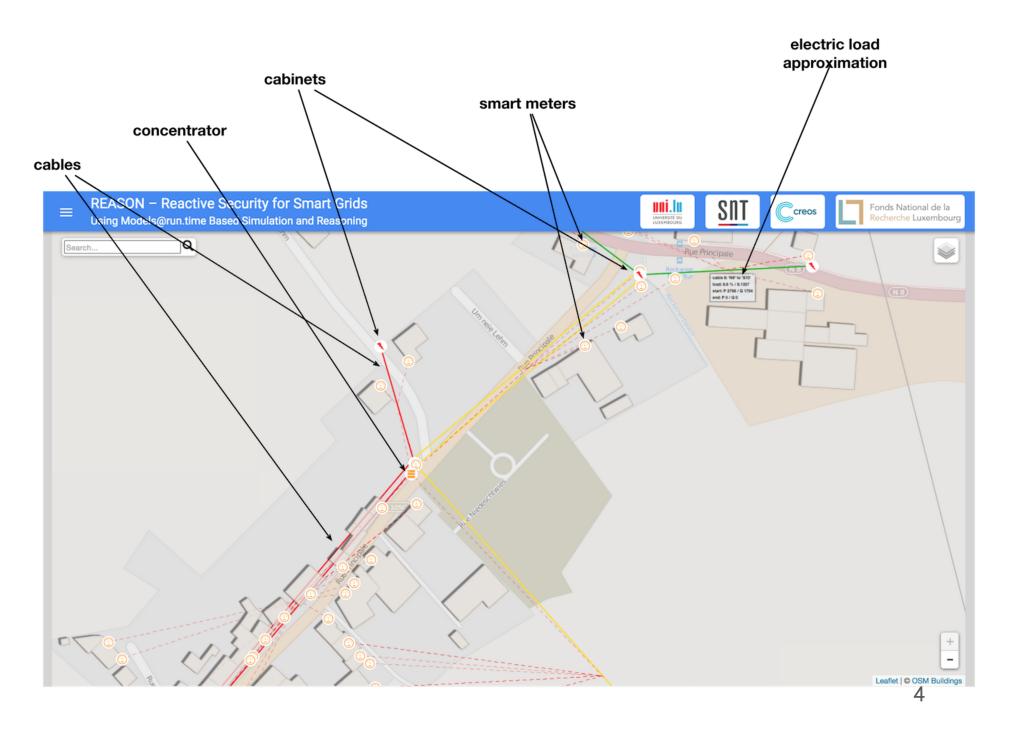
- research conducted in Luxembourg focused on Computer Science
- working in close collaboration with industrial partners
 - Smart grid
 - Metal industry
 - Industrie 4.0
 - Transportation systems
 - Bank, trading and wealth management
- ultimate goal: near-real-time analytics
 - designing tools to ease operational decision-making
- joined work with start-up DataThings
 - specialized in custom data analytics



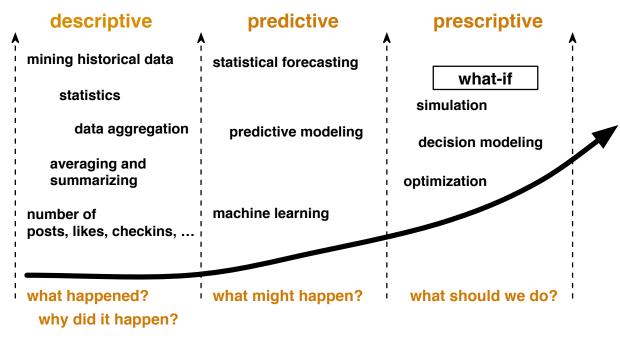
The next generation of smart cyber-physical systems

CPS interact with their environments via sensors and actuators, and *monitor and control physical processes*, using feedback loops, where physical processes and computations affect each other (E. A. Lee)

...has the potential to lay the foundations for our critical infrastructures of tomorrow



But what kind of analytics is needed?

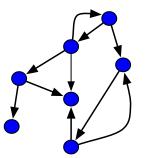


Reactive Models@Run.time can handle such mix

model-driven engineering **purpose**: domain definition meta-model: defined as EMF/ Ecore, UML, DSL, textual/graphical formalism, ... structure + behavior

model

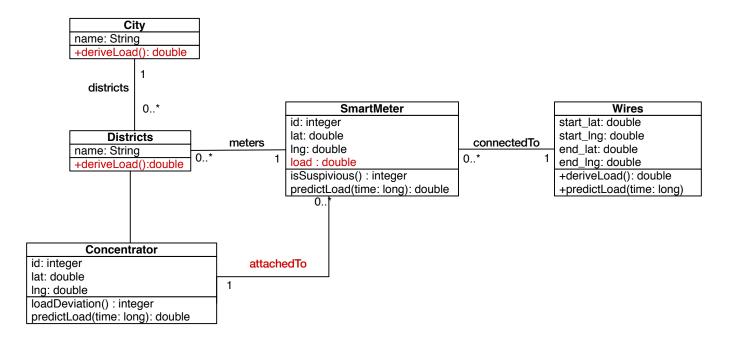
models@ run.time **purpose: runtime usage** represent the context of CPSs during runtime to reason about a systems state models@run.time / object graph



behavior modeling defines all domain known simulation and prediction functions (e.g. Kirchoff laws, ohm laws..) through code or sub-models.

related to: GEMOC initiative, executable modeling, model-based simulation... 6

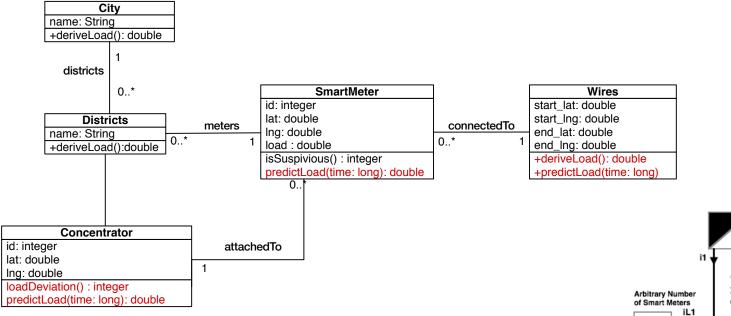
Smart grid data are in motion



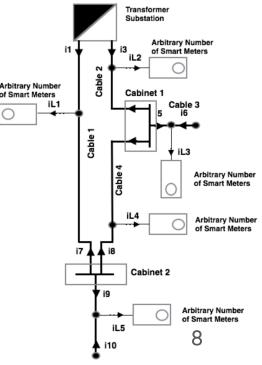
Red elements have different values over time (like a time-series). In a nutshell, our model defines all its entities as a function of time. More details in our MODELS'14 and SEKE'17 papers.

 $readProperty(ID_{elem}, TP_{timepoint}) => \{Attrs_{ID, TP}, Rels_{ID, TP}\}$

Behavior model potentially contains known-unknowns

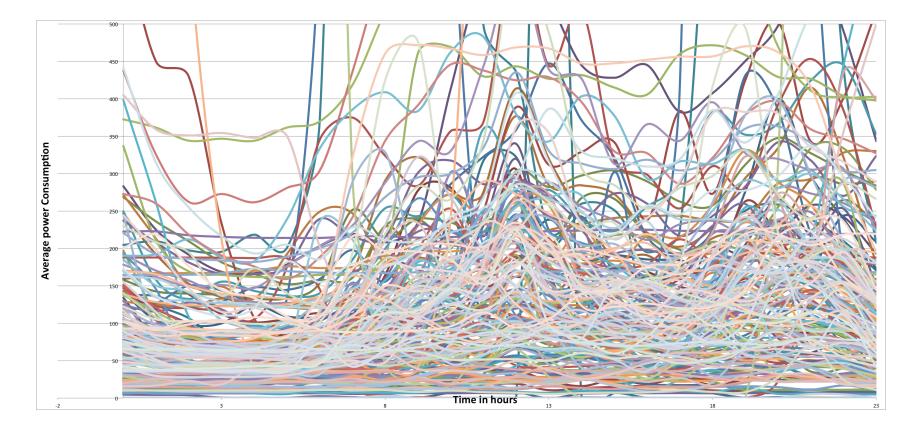


Wire load prediction is a well-known problem but relies on meters' electric consumption (Wh) which are obviously not known at design time. The same applies for suspicious value detection...



What is normal? What is a fraud?

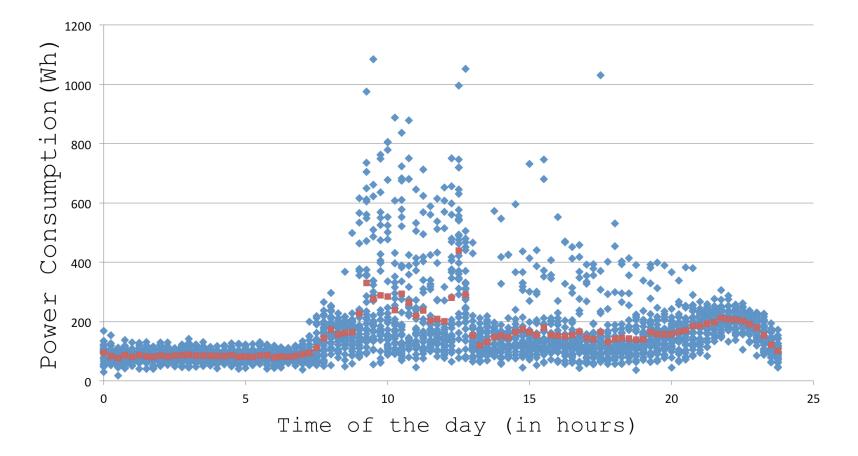
Here are ~200 electric consumption curves of a district in Luxembourg. Where are issues? Is there a common function?



Not obvious, even for a deep learning algorithm

Each can be turned independently into a probability space

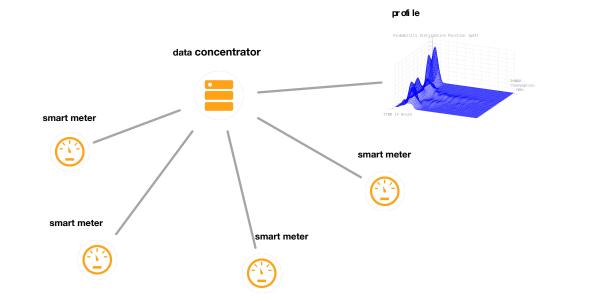
Per customer, we can build a daily and/or weekly consumption profile using machine learning



The need for flexible micro-learning

- Coarse-grained can just learn statistics at the concentrator level
 - Problem: connections from meters to concentrators vary
 - Network protocols can logically reconfigure grids hourly!
- a concentrator profiler depends on connected meter profiles
 - how can we model dependencies between learned/derived?

⊖ (Micro) learning units can be composed together, on-demand



Motivation and needs

- Many things are known at design time
 - e.g., mathematical and physical models, domain knowledge, ...
- However, some information can only be learned from live data
 - e.g., consumption behavior of customers, failure rates, ...
 - Often, what can be learned is known at design time by *experts*
- *stands in relation to domain knowledge*
- WARNING: Machine Learning only reflect past values!
 - Who wants to measure a black-out to prevent it?
 - Instead of *pure learning*, initial function are needed
- *how to express, i.e., model what can/should be learned?*

Weaving learning into domain modeling: requirements

R1: modeling learning together with and at the same level than domain data

R2: A learning should be encapsulated into independently computable small learning units: -> micro learning

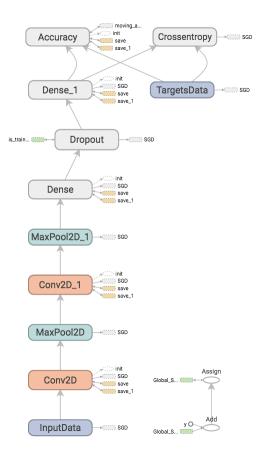
R3: learning units, domain data, derived attributes can be **mixed and chained**

R4: automated mapping from the domain representation to the internal mathematical representation required by ML algorithms

R5: learning must be updated in live (e.g. incremental learning)

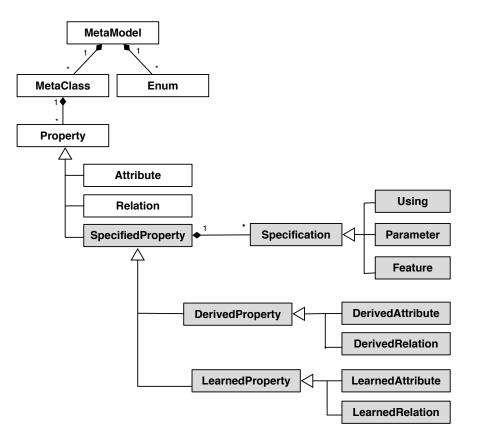
Modeling Learning != Modeling with Learning

Abstractions are required to ease the learning algorithm development. They mostly leverage procedure-like flows such as TensorFlow model (below). Despite it could be in future complementary, we only wrap learning units using their contract (input/output).



Proposition

Meta Meta Model (MOF-like) extension



Features act as extractors, virtually a relationship to other properties...

Extended Meta-Model Textual Syntax

We use a classic base such as TextCore, EMFFacade, KM3, Kermeta...

```
metaModel ::= (class | enum)
enum ::= 'enum' ID '{' ID (',' ID)* '}'
class ::= 'class' ID ('extends' ID (',' ID)*)? '{' property* '}'
property ::= annot* ( 'att' | 'rel' | 'ref' ) ID : ID spec?
```

We extend it with learning/deriving behavior definition, STRING=expression

```
annot ::= ( 'learned' | 'derived' | 'global')
```

```
spec ::= '{' (feature| using | param)* '}'
```

```
param ::= 'with' ID ( STRING | NUMBER )
```

```
feature ::= 'from' STRING
```

using ::= 'using' STRING /* NeuralNetwork, GaussianMixture, Bayesian*, DecisionTree... */

Modeling Learning Patterns (1/3)

Embeded, micro-learned classifier

class SmartMeter {

att activeEnergy: Double

att reactiveEnergy: Double

rel customer : Customer

learned att anomaly: Boolean {

from "activeEnergy"

from "reactiveEnergy"

using "GaussianClassifier"

Modeling Learning Patterns (2/3)

class SmartMeterProfile {

rel meter : SmartMeter

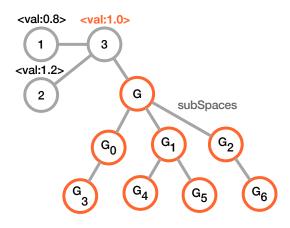
@timeSensitivity "{{daily}}"

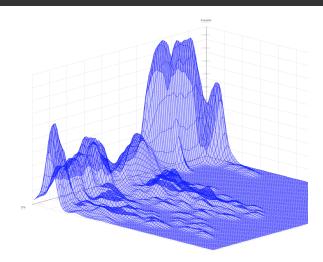
from "HOURS(meter.time)" //round time in hour

from "meter.activeEnergyConsumed" //+ type of day, temporatures...

using "GaussianMixture"

class SmartMeter { rel profiles : SmartMeterProfile }





Modeling Learning Patterns (3/3)

Derived attributes and learned attributes can be mixed (both ways)

class Concentrator {

rel connectedMeters : SmartMeters

ref profile : ConcentratorProfile

class ConcentratorProfile {

ref host : Concentrator

derived att powerProbabilities : Double[] {

from "host.connectedMeters.profile"

using "aggregator" }

Similarly Recommendation Systems can be build (full example in the paper)

Experimental validation

Experimental goal and setup

Integrating Machine Learning within MDE tools eases manipulation of dozen of learning units. How **effective/efficient** are they?

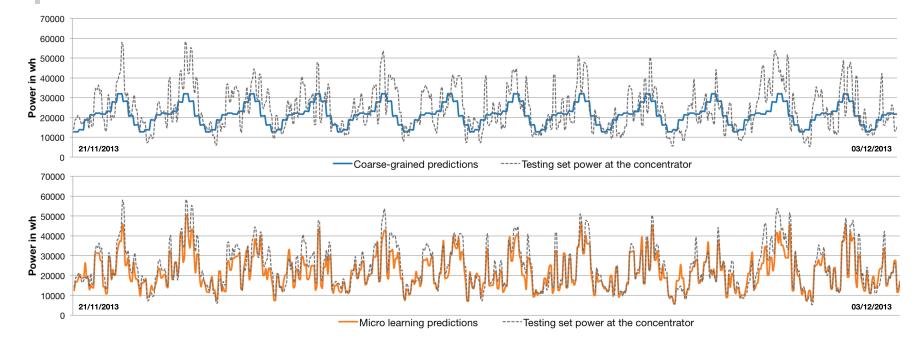
- are micro learning units more accurate than coarse-grained ones?
- are such extended models fast enough to be used for *live analytics*?

Target system

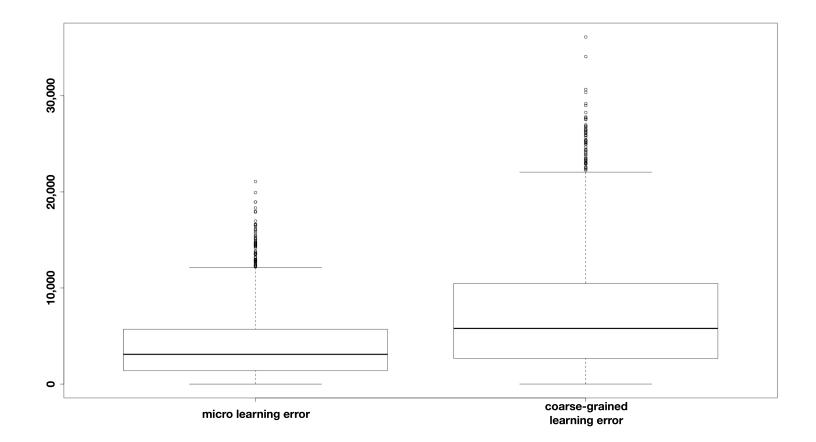
- predicting customers' electric consumption behavior
- 2 concentrators and 300 smart meters
- 7,131,766 power records (6,389,194 for training, 742,572 for testing)
- every hour, randomly change the smart meter connections
 - Each concentrator has between 50 and 200 connected meters
- the same algorithms are used for *coarse-grained* and *microlearning*

Predicting concentrator electric load

Implemented as a derived attribute leveraging connected meters relationships and learned attributes. Micro-learning (orange) clearly outperforms coarse-grained learning, confirming the benefits to mix topology and learning units.

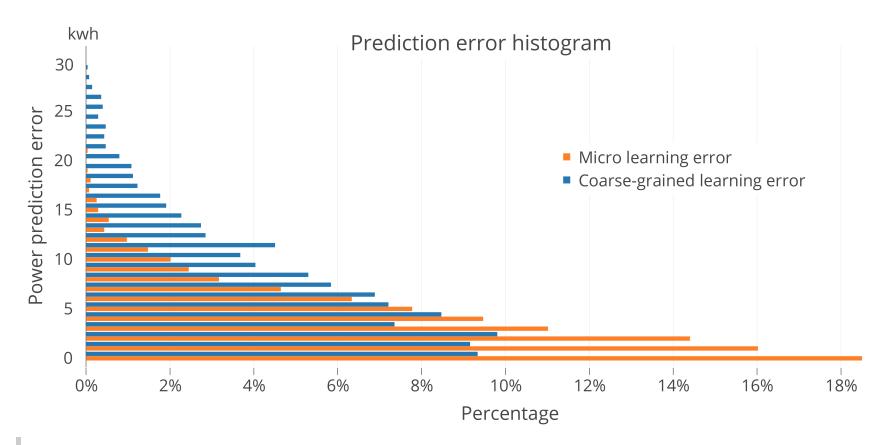


About predictions effectivness (1/2)



The overall prediction divergence is highly improved!

About predictions effectivness (2/2)



Micro-learning especially reduces major power prediction mistakes

About such *reactive* model efficiency

Users	Records	Loading in sec	Profiling in sec
10	283,115	4.28	1.36
50	1,763,332	21.94	7.20
100	3,652,549	44.80	14.44
500	17,637,808	213.80	67.12
1000	33,367,665	414.82	128.53
5000	149,505,358	1927.21	654.61

- roughly linear with the number of records loaded: O(n)
- around 60,000 values per second on a single processor
- predicting: 1,000 values per second (sum all smart meter profiles)
- fast enough for live usage!

Update: GreyCat now uses ND-Trees leading to 2,000,000 v/s learning speed

Production feedback...

THEORY IS SPLENDID BUT UNTIL PUT INTO PRACTICE, IT IS VALUELESS.

QUOTEHD.COM James Cash Penney American Businessman

Declarative but rich extractors

- Extractors were initially designed as *math expressions*
 - from "(this.meter.reactiveEnergy + this.activeEnergy) / 2"
- Learning algorithms need more powerful preprocessor
 - introducing tasks such as from task_exp

```
task_exp ::= action_exp ('.' action_exp)
action_exp ::= ID '(' param ( '.' param)* ')' //action ID comes from associated plugins
param ::= (STRING, NUMBER, subTask)
subTask ::= '{' task_exp '}'
```

action library contains lambda-like operators, forEach, travelInTime...

from linearReg({ travelInTime("\${now} - 2*\${hour}").reactiveEnergy },{ this.reactiveEnergy })

When to learn? Ensuring consistency

- Learning units can be updated through a call to .learn()
 - can it be automatic? (ensuring strong consistency)
- At call momentum, extractors are executed emitting features shot
 - if P depends on A and B, both should be updated
 - otherwise learning will dramatically diverge (e.g. classifier)
- We need learning transactions to update the model
 - similarly to DB storages then enforce consistent points
 - example of Java API:

Transaction ml_t = model.newTransaction();

a.setValue(1234); //this will notify p, but learning is in pending

b.setValue(1234);

ml_t.close(); //actually call learn methods on all affected profiles

What's next? Towards Meta-Learning

Meta-Learning is about learning optimal parameters of the learning class against a specific problem

- Currently, we request *complete* modeling of hypothesis about data
- Usually, params are open, often configure using empirical runs

```
class SmartMeterProfile {
```

```
using ("GaussianFixTree | GMM | NeuralNetwork")
```

```
from "parent.activeEnergy"
```

```
@timeSensitivity(" [1:24] {{weeks}} ")
```

```
with learningRate (0.001 | 0.003)
```

Using extended MetaModel, reflexive exploration can find optimal params

Conclusion and take away slide

- Analytics requires *heterogenous* and *independents* learning units
 - micro-learning (profiling), taste vectors (recommendation)
- Domain modeling and Machine Learning can be greatly combined
 - chaining learning and derived functions
 - MDE at the rescue to update all learning units even in-live
- This Paves the way for *prescriptive analytics* & in-depth exploration
- GreyCat is open source! <u>https://github.com/datathings/greycat</u>

Thank You !

Any questions 😮

UNIVERSITÉ DU LUXEMBOURG

٠