
SQL-PL4OCL: an automatic code
generator from OCL to SQL

procedural language

Marina Egea and Carolina Dania

Sep. 19, 2017
MoDELS. Austin, Texas

Outline

• Motivation

• Background

• Mapping OCL to SQL-PL

• How to map data models

• How to map OCL expressions

• Tool

• Benchmark

• Conclusions

2

OCL as a query language
Motivation

•Evaluation of OCL expression on medium/large
scenarios.

•Integration of OCL expressions (invariants/queries)
into an automated code generation process where
the persistent layer are SQL/PL databases

3

Background

4

• objects

Alice: Profile

T1: Timeline

Ph1: Photo

Ph2: Photo

Ph3: Photo

+age : 24

+id : 2390

+id : 2391

+id : 2392

• values

friends

*

*

owns
belongsTo

0..1

0..1

0..1
postedOn

posts

*

• associations (association-ends)

• classes

Status

Timeline

Photo
Profile

Post

UML (Unified Modeling Language)
Ex. Social Network

Class diagram

Object diagram

• links

-id: String-age: Integer

• attributes

• inheritance

5

OCL (Object Constraint Language)

• It is a general-purpose (textual) formal language that allows:
• retrieve objects and their values
• navigate through related objects

• It supports a set of types with a set of operations over them, and
• primitive types (Integer, String, Boolean), and
• collection types (Set, Bag, OrderedSet, and Sequence), and
• operators like: +, -, >, <, size, isEmpty, notEmpty, characters, and
• iterators like: forAll, exists, collect

6

OCL (Object Constraint Language)

Timeline.allInstances()

• All instances of Timeline

• Number of instances
Timeline.allInstances()�>size()

’hi’.characters()

• Convert the string ‘hi’ in a sequence of characters

Profile.allInstances()�>forAll(p|p.age > 18)

• Every profile is older than 18 years old

Profile.allInstances()�>select(p|p.age > 18)�>isEmpty()

• There isn’t any profile older than 18

friends

*

*

owns
belongsTo

0..1

0..1

0..1
postedOn

posts

*

Status

Timeline

Photo
Profile

Post

-id: String-age: Integer

7

Databases

• Structured Query language (SQL)
• RBMS: MySQL, MariaDB, PostgreSQL, and MS SQL.

select * from Photo

select *

 from (select * from Photo) as t

1.queries

8

Databases

• Structured Query language (SQL)
• RBMS: MySQL, MariaDB, PostgreSQL, and MS SQL.

create temporary table Photo(pk Int);

insert into Photo(val) (select pk from Photo);

2.sentences1.queries

8

Databases

• Structured Query language (SQL)
• RBMS: MySQL, MariaDB, PostgreSQL, and MS SQL.

declare procedure nameProc

begin

 ...

end;
call nameProc;

2.sentences1.queries 3.store procedures
- cursors
- conditionals
- loops

8

Mapping OCL to SQL-PL

9

languagelanguage

transformation
tool

transformation
definiton

PIM

is
written

in

PSM

is
written

in

is
used
by

Mapping OCL to SQL-PL

10

languagelanguage

transformation
tool

transformation
definiton

PIM

is
written

in

PSM

is
written

in

is
used
by

UML/OCL

Class/objects
diagrams
Queries

Mapping OCL to SQL-PL

SQL/PL

SQL-PL4OCL

Theoretical framework

Databases
Stored

procedures

Formal definition

Implementation

10

From OCL to SQL-PL
Mapping data/object models

• a table with a column for each class
• a column for each attribute

pk

table: Profile
age

• a table with two columns for each association

Object model
Alice: Profile

age: 18

Bob: Profile

age: 10

• a row for each object in the table associated with the class
• a row for each link in the corresponding table

pk age
1 18
2 10

myFriends friendsOf
1 2

table: friendship
myFriends friendsOf

11

From OCL to SQL-PL
Mapping OCL expressions

Every expression is mapped into a stored procedure
create procedure name
begin

end;//
call name()//

OCL to SQL-PL expression

The mapping is recursive over the expression.
Depending on the complexity of the OCL expressions, they are mapped:
• into a SQL query
• into a SQL query and need an auxiliary block definition

12

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()
create procedure name
begin

 ;
end; //
call name(); //

select Timeline.pk as val
from Timeline

13

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()
create procedure name
begin

 ;
end; //
call name(); //

select Timeline.pk as val
from Timeline

13

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()

Timeline.allInstances()�>size()

create procedure name
begin

 ;
end; //
call name(); //

select Timeline.pk as val
from Timeline

select count(t1.val) as val
from
 (
) as t1

13

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()

Timeline.allInstances()�>size()

create procedure name
begin

 ;
end; //
call name(); //select Timeline.pk as val

from Timeline

select count(t1.val) as val
from
 (
) as t1

13

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapping into a SQL query

Timeline.allInstances()

Timeline.allInstances()�>size()

create procedure name
begin

 ;
end; //
call name(); //

select Timeline.pk as val
from Timeline

select count(t1.val) as val
from
 (
) as t1

13

From OCL to SQL-PL
Mapping OCL expressions (cont.)

• Expressions that are mapped into a SQL query and need an auxiliary
block definition

create procedure name
begin

end;//

’hi’.characters()

begin

end;

insert into wchars(val) (select ’h’ as val);
insert into wchars(val) (select ’i’ as val);

create temporary table wchars (pos int not null auto increment,  
 val varchar(250), primary key(pos));

drop table if exists wchars;

select val from wchars order by pos;

pos val
1 h
2 i

14

From OCL to SQL-PL  
 Intermediate tables and queries

15

Primitive types, sets, and bags OrderedSets and sequences

Tables

create temporary table name  
(val type);  
 

create temporary table name  
(val type,  
 pos int not null auto increment,  
 primary key(pos));

Queries
select val  
from name; 
 

select val  
from name 
order by pos; 

From OCL to SQL-PL
Mapping OCL expressions (cont.)

create procedure name
begin
 begin
 begin
 drop table if exists wchars1;
 create temporary table wchars1 (pos int not null auto increment, val varchar(250), primary key(pos));
 insert into wchars1(val) (select ’h’ as val);
 insert into wchars1(val) (select ’i’ as val);
 end;
 begin
 drop table if exists wchars2;
 create temporary table wchars2 (pos int not null auto increment, val varchar(250), primary key(pos));
 insert into wchars2(val) (select ’h’ as val);
 insert into wchars2(val) (select ’o’ as val);
 end;
 create temporary table union(pos int NOT NULL auto_increment, val varchar(250), primary key (pos));
 insert into union(val)
 (select t1.val as val from (select val from wchars1 order by pos asc) as t1);
 insert into union(val)
 (select t1.val as val from (select val from wchars2 order by pos asc) as t1);
 end;
 select val from union order by pos;
end;//
call name();//

‘hi‘.characters()�>union(‘ho‘.characters())

16

From OCL to SQL-PL
Mapping OCL expressions (cont.)

create procedure name
begin
 begin
 begin
 drop table if exists wchars1;
 create temporary table wchars1 (pos int not null auto increment, val varchar(250), primary key(pos));
 insert into wchars1(val) (select ’h’ as val);
 insert into wchars1(val) (select ’i’ as val);
 end;
 begin
 drop table if exists wchars2;
 create temporary table wchars2 (pos int not null auto increment, val varchar(250), primary key(pos));
 insert into wchars2(val) (select ’h’ as val);
 insert into wchars2(val) (select ’o’ as val);
 end;
 create temporary table union(pos int NOT NULL auto_increment, val varchar(250), primary key (pos));
 insert into union(val)
 (select t1.val as val from (select val from wchars1 order by pos asc) as t1);
 insert into union(val)
 (select t1.val as val from (select val from wchars2 order by pos asc) as t1);
 end;
 select val from union order by pos;
end;//
call name();//

‘hi‘.characters()�>union(‘ho‘.characters())

‘hi‘.characters()

‘ho‘.characters()

16

From OCL to SQL-PL  
Structures in Store Procedures

create procedure name
begin
 begin
 …
 end; //
 begin
 …
 end; /
 …
end; //
call name(); //

Sequencial blocks structure

create procedure name
begin
 begin
 begin

 …
 …

…
 end; //
 end; //
end; //
call name(); //

Nested blocks structure

17

 declare done int default 0;
 declare var;
 declare crs cursor for (cursor-specific type - src);
 declare continue handler for sqlstate ’02000’ set done = 1;

src�>it(body)

 drop table if exists blq_name;
 create temporary table blq_name (value-specif type)

open crs;
repeat

 fetch crs into var;
 if not done then
 Iterator-specific body query
 Iterator-specific processing code
 end if; 
 until done end repeat;
 close crs;

From OCL to SQL-PL  
Iteratorsbegin

end;// 18

From OCL to SQL-PL
Iterators (cont.)
Profile.allInstances()�>forAll(p|p.age > 18)

create procedure forAll()
begin
 begin
 declare done int default 0 ;
 declare result boolean default true;
 declare tempResult int default 0;
 declare var1 int;
 declare crs cursor for select pk as val from Person;
 declare continue handler for sqlstate '02000' set done = 1;
 drop table if exists forAll;
 create temporary table forAll(val bool);
 open crs;
 repeat
 fetch crs into var1;
 if not done then
 select val into tempResult from (select tbl2.val > tbl3.val as val  
 from (select Person.age as val from Person, (select var1 as val) as tbl1
 where pk = tbl1.val) as tbl2,
 (select 18 as val) as tbl3) as tbl5;
 if not tempResult or tempResult is null then
 set done = 1;

set result = 0;
 end if;
 end if;
 until done end repeat;
 insert into forAll(val) (select result as val);
 close crs;
 end;
 select val from forAll;  
end;// 19

From OCL to SQL-PL
Iterators (cont.)
Profile.allInstances()�>forAll(p|p.age > 18)

create procedure forAll()
begin
 begin
 declare done int default 0 ;
 declare result boolean default true;
 declare tempResult int default 0;
 declare var1 int;
 declare crs cursor for select pk as val from Person;
 declare continue handler for sqlstate '02000' set done = 1;
 drop table if exists forAll;
 create temporary table forAll(val bool);
 open crs;
 repeat
 fetch crs into var1;
 if not done then
 select val into tempResult from (select tbl2.val > tbl3.val as val  
 from (select Person.age as val from Person, (select var1 as val) as tbl1
 where pk = tbl1.val) as tbl2,
 (select 18 as val) as tbl3) as tbl5;
 if not tempResult or tempResult is null then
 set done = 1;

set result = 0;
 end if;
 end if;
 until done end repeat;
 insert into forAll(val) (select result as val);
 close crs;
 end;
 select val from forAll;  
end;//

variables

19

From OCL to SQL-PL
Iterators (cont.)
Profile.allInstances()�>forAll(p|p.age > 18)

create procedure forAll()
begin
 begin
 declare done int default 0 ;
 declare result boolean default true;
 declare tempResult int default 0;
 declare var1 int;
 declare crs cursor for select pk as val from Person;
 declare continue handler for sqlstate '02000' set done = 1;
 drop table if exists forAll;
 create temporary table forAll(val bool);
 open crs;
 repeat
 fetch crs into var1;
 if not done then
 select val into tempResult from (select tbl2.val > tbl3.val as val  
 from (select Person.age as val from Person, (select var1 as val) as tbl1
 where pk = tbl1.val) as tbl2,
 (select 18 as val) as tbl3) as tbl5;
 if not tempResult or tempResult is null then
 set done = 1;

set result = 0;
 end if;
 end if;
 until done end repeat;
 insert into forAll(val) (select result as val);
 close crs;
 end;
 select val from forAll;  
end;//

cursor-specific type - src

19

From OCL to SQL-PL
Iterators (cont.)
Profile.allInstances()�>forAll(p|p.age > 18)

create procedure forAll()
begin
 begin
 declare done int default 0 ;
 declare result boolean default true;
 declare tempResult int default 0;
 declare var1 int;
 declare crs cursor for select pk as val from Person;
 declare continue handler for sqlstate '02000' set done = 1;
 drop table if exists forAll;
 create temporary table forAll(val bool);
 open crs;
 repeat
 fetch crs into var1;
 if not done then
 select val into tempResult from (select tbl2.val > tbl3.val as val  
 from (select Person.age as val from Person, (select var1 as val) as tbl1
 where pk = tbl1.val) as tbl2,
 (select 18 as val) as tbl3) as tbl5;
 if not tempResult or tempResult is null then
 set done = 1;

set result = 0;
 end if;
 end if;
 until done end repeat;
 insert into forAll(val) (select result as val);
 close crs;
 end;
 select val from forAll;  
end;//

temporary table

19

From OCL to SQL-PL
Iterators (cont.)
Profile.allInstances()�>forAll(p|p.age > 18)

create procedure forAll()
begin
 begin
 declare done int default 0 ;
 declare result boolean default true;
 declare tempResult int default 0;
 declare var1 int;
 declare crs cursor for select pk as val from Person;
 declare continue handler for sqlstate '02000' set done = 1;
 drop table if exists forAll;
 create temporary table forAll(val bool);
 open crs;
 repeat
 fetch crs into var1;
 if not done then
 select val into tempResult from (select tbl2.val > tbl3.val as val  
 from (select Person.age as val from Person, (select var1 as val) as tbl1
 where pk = tbl1.val) as tbl2,
 (select 18 as val) as tbl3) as tbl5;
 if not tempResult or tempResult is null then
 set done = 1;

set result = 0;
 end if;
 end if;
 until done end repeat;
 insert into forAll(val) (select result as val);
 close crs;
 end;
 select val from forAll;  
end;//

value specific-type

19

From OCL to SQL-PL
Iterators (cont.)
Profile.allInstances()�>forAll(p|p.age > 18)

create procedure forAll()
begin
 begin
 declare done int default 0 ;
 declare result boolean default true;
 declare tempResult int default 0;
 declare var1 int;
 declare crs cursor for select pk as val from Person;
 declare continue handler for sqlstate '02000' set done = 1;
 drop table if exists forAll;
 create temporary table forAll(val bool);
 open crs;
 repeat
 fetch crs into var1;
 if not done then
 select val into tempResult from (select tbl2.val > tbl3.val as val  
 from (select Person.age as val from Person, (select var1 as val) as tbl1
 where pk = tbl1.val) as tbl2,
 (select 18 as val) as tbl3) as tbl5;
 if not tempResult or tempResult is null then
 set done = 1;

set result = 0;
 end if;
 end if;
 until done end repeat;
 insert into forAll(val) (select result as val);
 close crs;
 end;
 select val from forAll;  
end;//

Iterator-specific body query

19

From OCL to SQL-PL
Iterators (cont.)
Profile.allInstances()�>forAll(p|p.age > 18)

create procedure forAll()
begin
 begin
 declare done int default 0 ;
 declare result boolean default true;
 declare tempResult int default 0;
 declare var1 int;
 declare crs cursor for select pk as val from Person;
 declare continue handler for sqlstate '02000' set done = 1;
 drop table if exists forAll;
 create temporary table forAll(val bool);
 open crs;
 repeat
 fetch crs into var1;
 if not done then
 select val into tempResult from (select tbl2.val > tbl3.val as val  
 from (select Person.age as val from Person, (select var1 as val) as tbl1
 where pk = tbl1.val) as tbl2,
 (select 18 as val) as tbl3) as tbl5;
 if not tempResult or tempResult is null then
 set done = 1;

set result = 0;
 end if;
 end if;
 until done end repeat;
 insert into forAll(val) (select result as val);
 close crs;
 end;
 select val from forAll;  
end;//

 Iterator-specific processing

19

SQL-PL4OCL  
tool component architecture

20

SQL-PL4OCL
Benchmark

• Vendor specific supported:  
MySQL/MariaDB, PostgreSQL,
SQL Server DBMS

• MariaBD works faster in most of
the cases

MySQL MariaDB PostgreSQL MSSQL

Q1 0.19s 0.13s 0.10s 0.12s

Q2 0.25s 0.20s 0.33s 0.28s

Q3 0.36s 0.35s 0.27s 0.26s

Q4 0.04s 0.04s 0.04s 0.05s

Q5 0.55s 0.40s 0.40s 0.42s

Q6 1.05s 0.55s 1.06s 1.03s

Q7 2.07s 1.56s 1.99s 2.08s

Q8 50.02s 43.08s 57.04s 53.47s

Q9 9.14s 8.00s 8.18s 8.89s

Q10 0.05s 0.04s 0.07s 0.05s

Q11 49.56s 40.02s 40.10s 43.46s

Q12 59.58s 51.23s 51.25s 54.82s

Q13 1.67s 1.98s 2.35s 1.90s

Q14 59.52s 54.33s 63.35s 58.33s

21

Related work
(comparison with OCL2SQL-DresdenOCL)

OCL pattern

context: Class

inv: OCL boolean expression

MySQL pattern

select *  
from Class 
where not OCL2SQL(OCL boolean expression)

OCL2SQL mapping is based on patterns and it does not
support iterators.

22

Conclusions

• Code-generator from OCL queries to the procedural language
extensions of SQL (SQL-PL)
• each OCL expression is mapped to a single stored

procedure
• temporary tables are used
• the three-valued evaluation semantics of OCL is considered

• Look for the integration of developed tools into CASE tools
• Empirical validation of the usefulness of the approach for a

software engineering team.

Future work

23

http://software.imdea.org/~dania/

Questions?

24

